LROC candidate images with solar glints off Lunar Laser Retroreflectors: A dedicated tool of NASA's Moon Trek

2020 ◽  
Author(s):  
Costanza Rossi ◽  
Natalie Gallegos ◽  
Luciana Filomena ◽  
Shan Malhotra ◽  
Emily Law ◽  
...  

<p>The Lunar Laser Ranging (LLR) investigations have provided time high-precision measurements of geodesy, dynamics and distance of the Earth-Moon system, and inferences about lunar interior and gravitational physics. LLR studies are supported by a total of five passive Laser Retro-Reflectors (LRR) placed on the Moon surface by the past missions Apollo-11, -14, -15 and Luna-17 and -21. The detection of their positions is decisive to improve the measurement accuracy and the data from alternative instrumentations contributed to their analysis. The Lunar Reconnaissance Orbiter Camera (LROC) operated by using the Standardized Lunar Coordinate System as reference system has acquired images of the Moon surface that represent data applicable to LLR planning and research. Several LROC images present nominal lighting conditions and solar glints reflected off of an LRR. Glints represent specular reflections of light that define higher-precision measurement of LRR position. In this way, their detection plays an important role in LRR analysis. The identification of candidate images with solar glints through time allows researchers to record these measurements. NASA and INFN-LNF (National Lab of Frascati) have collaboratively developed an LLR tool to support glint identification. The tool can be accessed using the Moon Trek (https://trek.nasa.gov/moon) which is one of the web based interactive visualization and analysis portals provided by the NASA’s Solar System Trek (https://trek.nasa.gov) project. The tool facilitates current ranging studies as well as planning of future missions that involve ranging activities such as future retroreflector deployments. Glint identification has been performed by using the LLR tool that allows us to investigate the image data, and to compute geometric calculations and LLR analyses. The tool with SPICE computations is provided to search for nominal conditions to catch a solar glint off of a retroreflector, to search for time intervals in which a reflector can be seen from a ground station on Earth, and to search in PDS database for images with these conditions. Moon Trek’s LLR tool allows us to find time intervals when spacecraft positioning was able to catch a solar glint reflected off of a retroreflector by setting the maximum incidence and phase angles. This analysis is accompanied by the search for LROC images available in Planetary Data System (PDS) that have solar glint off the LRR. Using the Moon Trek, it is possible to identify LROC images with solar glint off the LRR and to recognize optimal LROC candidates. This research allows us to identify good examples of LROC images that present solar glints. More than six candidate images over a period of 10 years of LROC data were recognized. In this contribution, we present the recognized LROC candidates and we show their detection in the image data, by avoiding the bias of the surface high albedo and the morphological pattern that can interfere with the analysis. The identification of solar glints off LRR will allow us to find previous observation that might be incorrect and to measure the LRR position in the Standardized Lunar Coordinate System of LROC images. These measures will be then compared with the ephemeris calculations obtained from LLR data.</p>

2021 ◽  
Author(s):  
Vishwa Vijay Singh ◽  
Liliane Biskupek ◽  
Jürgen Müller ◽  
Mingyue Zhang

<p>The distance between the observatories on Earth and the retro-reflectors on the Moon has been regularly observed by the Lunar Laser Ranging (LLR) experiment since 1970. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon, and a higher number of LLR observations in total. Providing the longest time series of any space geodetic technique for studying the Earth-Moon dynamics, LLR can also support the estimation of Earth orientation parameters (EOP), like UT1. The increased number of highly accurate LLR observations enables a more accurate estimation of the EOP. In this study, we add the effect of non-tidal station loading (NTSL) in the analysis of the LLR data, and determine post-fit residuals and EOP. The non-tidal loading datasets provided by the German Research Centre for Geosciences (GFZ), the International Mass Loading Service (IMLS), and the EOST loading service of University of Strasbourg in France are included as corrections to the coordinates of the LLR observatories, in addition to the standard corrections suggested by the International Earth Rotation and Reference Systems Service (IERS) 2010 conventions. The Earth surface deforms up to the centimetre level due to the effect of NTSL. By considering this effect in the Institute of Geodesy (IfE) LLR model (called ‘LUNAR’), we obtain a change in the uncertainties of the estimated station coordinates resulting in an up to 1% improvement, an improvement in the post-fit LLR residuals of up to 9%, and a decrease in the power of the annual signal in the LLR post-fit residuals of up to 57%. In a second part of the study, we investigate whether the modelling of NTSL leads to an improvement in the determination of EOP from LLR data. Recent results will be presented.</p>


1996 ◽  
Vol 172 ◽  
pp. 321-324 ◽  
Author(s):  
David Vokrouhlický

Relativistic spin effects involved in the Earth-Moon dynamics are reviewed. They enclose: (i) the coordinate system effects, and (ii) the relativistic physical librations. The geodetic precession is the only relativistic spin phenomenon which has been firmly detected so far. The best candidates of the effects which might be detected in the forthcoming period are the lunar physical librations and coordinate nutations. As for the latter, however, a fine cancellation between the geodetic and the Lense-Thirring coordinate effects results in decreasing their amplitude just below the possibility of the Lunar Laser Ranging technology.


Author(s):  
J. F. Brock

Abstract. Since the dawn of time the Moon has held fascination for the earliest humans who saw it as a natural navigational beacon, a heavenly body to be revered and a poetic inspiration. Ancient art features the Moon as a prominent subject from all epochs and genres. The name “lunatic” infers that it drives men insane. Giant tides and rapid recessions of water are all attributed to its gravitational influence. As a young boy I was thrilled by stories of Moon travel like Jules Verne’s “From the Earth to the Moon” plus TV shows and movies such as “Lost in Space”, “Star Trek” and “Dr. Who.”The Russian-American “Space Race” focussed on the exciting possibility of man landing on the Moon. I cannot forget the live telecast of the Apollo 11 astronauts on the Moon’s surface in 1969 when I was 13 years old. Four years later I decided to be a land boundary surveyor trained in precise measurement for land title creation. My curiosity was alerted to the Apollo 11 laser ranging aspect of the project when the US team set up a bank of retro-reflectors for measurements from powerful devices on the Earth in the same way we Earthly surveyors make our daily measurements using such EDM equipment.In this paper I will describe the techniques and equipment utilised during this accurate Moon positioning project. You will also see the Earth observatories still measuring to five sites on the Moon and some ancient admirable attempts to determine this distance.


2021 ◽  
Vol 13 (23) ◽  
pp. 4837
Author(s):  
Peng Yang ◽  
Yong Huang ◽  
Peijia Li ◽  
Siyu Liu ◽  
Quan Shan ◽  
...  

Chang’E-5 (CE-5) is China’s first lunar sample return mission. This paper focuses on the trajectory determination of the CE-5 lander and ascender during the landing and ascending phases, and the positioning of the CE-5 lander on the Moon. Based on the kinematic statistical orbit determination method using B-spline and polynomial functions, the descent and ascent trajectories of the lander and ascender are determined by using ground-based radiometric ranging, Doppler and interferometry data. The results show that a B-spline function is suitable for a trajectory with complex maneuvers. For a smooth trajectory, B-spline and polynomial functions can reach almost the same solutions. The positioning of the CE-5 lander on the Moon is also investigated here. Using the kinematic statistical positioning method, the landing site of the lander is 43.0590°N, 51.9208°W with an elevation of −2480.26 m, which is less than 200 m different from the LRO (Lunar Reconnaissance Orbiter) image data.


Dissipation in the Moon produces a small offset, ca. 0.23", of the Moon's rotation axis from the plane defined by the ecliptic and lunar orbit normals. Both solid body tidal friction and viscous fluid friction at a core—mantle interface are plausible mechanisms. In this paper, I discuss the merits of each and find that solid friction requires a low lunar tidal Q , ca . 28, while turbulent fluid friction requires a core of radius 330 km to cause the signature observed by lunar laser ranging. Large ( ca . 0.4—8.0") free librations of the lunar figure have also been detected by laser ranging. Both a very recent impact on the Moon and fluid turbulence in the lunar core are plausible mechanisms for generating these free librations.


2016 ◽  
Vol Volume 112 (Number 3/4) ◽  
Author(s):  
Cilence Munghemezulu ◽  
Ludwig Combrinck ◽  
Joel O. Botai ◽  
◽  
◽  
...  

Abstract The lunar laser ranging (LLR) technique is based on the two-way time-of-flight of laser pulses from an earth station to the retroreflectors that are located on the surface of the moon. We discuss the ranging technique and contribution of the timing systems and its significance in light of the new LLR station currently under development by the Hartebeesthoek Radio Astronomy Observatory (HartRAO). Firstly, developing the LLR station at HartRAO is an initiative that will improve the current geometrical network of the LLR stations which are presently concentrated in the northern hemisphere. Secondly, data products derived from the LLR experiments – such as accurate lunar orbit, tests of the general relativity theory, earth–moon dynamics, interior structure of the moon, reference frames, and station position and velocities – are important in better understanding the earth–moon system. We highlight factors affecting the measured range bias such as the effect of earth tides on station position and delays induced by timing systems, as these must be taken into account during the development of the LLR analysis software. HartRAO is collocated with other fundamental space geodetic techniques which makes it a true fiducial geodetic site in the southern hemisphere and a central point for further development of space-based techniques in Africa. Furthermore, the new LLR will complement the existing techniques by providing new niche areas of research both in Africa and internationally.


2009 ◽  
Vol 18 (07) ◽  
pp. 1129-1175 ◽  
Author(s):  
JAMES G. WILLIAMS ◽  
SLAVA G. TURYSHEV ◽  
DALE H. BOGGS

A primary objective of the lunar laser ranging (LLR) experiment is to provide precise observations of the lunar orbit that contribute to a wide range of science investigations. In particular, time series of the highly accurate measurements of the distance between the Earth and the Moon provide unique information used to determine whether, in accordance with the equivalence principle (EP), these two celestial bodies are falling toward the Sun at the same rate, despite their different masses, compositions, and gravitational self-energies. Thirty-five years since their initiation, analyses of precision laser ranges to the Moon continue to provide increasingly stringent limits on any violation of the EP. Current LLR solutions give (-1.0 ± 1.4) × 10-13 for any possible inequality in the ratios of the gravitational and inertial masses for the Earth and Moon, Δ(MG/MI). This result, in combination with laboratory experiments on the weak equivalence principle, yields a strong equivalence principle (SEP) test of Δ(MG/MI) SEP = (-2.0 ± 2.0) × 10-13. Such an accurate result allows other tests of gravitational theories. The result of the SEP test translates into a value for the corresponding SEP violation parameter η of (4.4 ± 4.5) × 10-4, where η = 4β - γ - 3 and both γ and β are parametrized post-Newtonian (PPN) parameters. Using the recent result for the parameter γ derived from the radiometric tracking data from the Cassini mission, the PPN parameter β (quantifying the nonlinearity of gravitational superposition) is determined to be β - 1 = (1.2 ± 1.1) × 10-4. We also present the history of the LLR effort and describe the technique that is being used. Focusing on the tests of the EP, we discuss the existing data, and characterize the modeling and data analysis techniques. The robustness of the LLR solutions is demonstrated with several different approaches that are presented in the text. We emphasize that near-term improvements in the LLR accuracy will further advance the research on relativistic gravity in the solar system and, most notably, will continue to provide highly accurate tests of the EP.


Precise predictions of the ranges of the retroreflectors on the Moon from the observing stations on the Earth are required to facilitate the making of observations and also to provide a sound basis for the analysis of the observations. The precision of observations is already such that the theories of the Moon’s motion and libration currently used for the ephemerides in the Astronomical Ephemeris are inadequate for the analysis, and so the orbital data are generated by numerical integration. New laser systems will give a further improvement in precision, and further factors will have to be taken into account in the predictions. The exploitation of the data will require the development of new analytical theories, but the results will be of value in many different fields of study.


Sign in / Sign up

Export Citation Format

Share Document