BepiColombo – Status and first Results from Activities during Cruise

2020 ◽  
Author(s):  
Johannes Benkhoff ◽  
Go Murakami ◽  
Joe Zender

<p>BepiColombo was launched on 20 October 2018 the BepiColombo from the European spaceport in French Guyana and is now on route to Mercury to unveil Mercury’s secrets. BepiColombo with its state of the art and very comprehensive payload will perform measurements to increase our knowledge on the fundamental questions about Mercury’s evolution, composition, interior, magnetosphere, and exosphere. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) and consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (Mio). </p> <p>The BepiColombo spacecraft is during its 7-year long journey to the innermost terrestrial planet in a so-called ‘stacked’ configuration: The Mio and the MPO are connected to each other, and stacked on-top of the Mercury Transfer Module (MTM). Only in late 2025, the ‘stack’ configuration is abandoned and the individual elements spacecraft are brought in to their final Mercury orbit: 480x1500km for MPO, and 590x11640km for Mio. The foreseen orbits of the MPO and Mio will allow close encounters of the two spacecraft throughout the mission. The mission has been named in honor of Giuseppe (Bepi) Colombo (1920–1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.</p> <p>On its way BepiColombo has several opportunities for scientific observations - during the cruise into the inner solar system and during nine flybys (one at Earth, two at Venus and six at Mercury). However, since the spacecraft is in a stacked configuration during the flybys only some of the   instruments on both spacecraft will perform scientific observations. In April 2020 BepiColombo has passed Earth. The next planetary flyby will be on 15<sup>th</sup> October 2020 at Venus.</p> <p>A status of the mission and instruments and a summary of first results from measurements taken during the Earth flyby and during the first two years in cruise will be given.</p> <p> </p>

2020 ◽  
Author(s):  
Johannes Benkhoff ◽  
Joe Zender ◽  
Go Murakami

<p>Mercury is a mysterious planet in many ways very different from what scientist were expecting. BepiColombo was launched on 20 October 2018 the BepiColombo from the European spaceport in French Guyana and is now on route to Mercury to unveil Mercury’s secrets. BepiColombo with its state of the art and very comprehensive payload will perform measurements to increase our knowledge on the fundamental questions about Mercury’s evolution, composition, interior, magnetosphere, and exosphere. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) and consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (Mio). </p><p>The BepiColombo spacecraft is during its 7-year long journey to the innermost terrestrial planet in a so-called ‘stacked’ configuration: The Mio and the MPO are connected to each other, and stacked on-top of the Mercury Transfer Module (MTM). Only in late 2025, the ‘stack’ configuration is abandoned and the individual elements spacecraft are brought in to their final Mercury orbit: 480x1500km for MPO, and 590x11640km for Mio. The foreseen orbits of the MPO and Mio will allow close encounters of the two spacecraft throughout the mission. The mission has been named in honor of Giuseppe (Bepi) Colombo (1920–1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.</p><p>On its way BepiColombo has several opportunities for scientific observations - during the cruise into the inner solar system and during nine flybys (one at Earth, two at Venus and six at Mercury). However, since the spacecraft is in a stacked configuration during the flybys only some of the   instruments on both spacecraft will perform scientific observations. In early April of 2020 BepiColombo will flyby Earth and later in October the first Venus flyby will follow.</p><p>A status of the mission and instruments and first results of measurements taken during the Earth flyby and the first year in cruise will be given.</p>


2021 ◽  
Author(s):  
Johannes Benkhoff

<p>BepiColombo was launched on 20 October 2018 from the European spaceport Kourou in French Guyana and is now on route to Mercury to unveil Mercury’s secrets. BepiColombo with its state of the art and very comprehensive payload will perform measurements to increase our knowledge on the fundamental questions about Mercury’s evolution, composition, interior, magnetosphere, and exosphere. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) and consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (Mio). </p> <p>On its way BepiColombo will travel 18 times around the Sun until the spacecraft will be put into an polar orbit around Mercury. During its long way through the inner solar system, BepiColombo will perform nine flybys (one at Earth, two at Venus and six at Mercury). However, since the spacecraft is in a stacked configuration during the flybys only some of the instruments on both spacecraft will perform scientific observations. In addition there are plenty of opportunities for further science operations (testing Einstein’s theory during solar conjunctions, listening to gamma ray bursts, or investigation of the solar environment).</p> <p>A status of the mission and instruments, science operations plans during cruise, and first results of measurements taken in the first three years since launch will be given.</p>


2021 ◽  
Author(s):  
Joe Zender ◽  
Johannes Benkhoff ◽  
Go Murakami ◽  
Elsa Montagnon

<p><strong>Abstract</strong></p> <p>The BepiColombo spacecraft was launched on 20 October 2018 from the European spaceport in French Guyana and is currently on its way to Mercury. On its way, the spacecraft will swing-by Mercury six times in its stacked configuration, before releasing the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) in their corresponding orbits around the target planet.</p> <p><strong>Introduction</strong></p> <p>Mercury is in many ways a very different planet from what we were expecting. On 20 October 2018 the BepiColombo spacecraft [1] started its 7 year journey to the innermost terrestrial planet to investigate on the fundamental questions about its evolution, composition, interior, magnetosphere, and exosphere.</p> <p>BepiColombo is a joint project between the Euro- pean Space Agency (ESA) and the Japanese Aero- space Exploration Agency (JAXA). The Mission con- sists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). From their dedicated orbits the two space- craft will be studying the planet and its environment.</p> <p>The mission has been named in honor of Giuseppe (Bepi) Colombo (1920–1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.</p> <p>During the cruise phase, the spacecraft flies in a stacked configuration: the MMO and MPO are mounted ontop of the Mercury Transfer Module (MTM). As a consequence, most remote sensing instruments onboard the MPO are mounted towards the MTM and have a fully obstructed field-of-view. The MMO instrumentation is shielded by a protection shield (MOSIF) and several instruments still await the deployment on measurement booms.</p> <p>Despite the reduced instrument availability, scientific and engineering operations will be scheduled during the cruise phase, especially during the swing-bys.</p> <p><strong>Mercury Swing-bys</strong></p> <p>Following the Earth and two Venus swing-bys, six Mercury swing-bys are foreseen from October 2021 until 9 January 2025. The poster will discuss the flyby geometries and potential operation opportunities, in comparison with the three MESSENGER Mercury swing-bys from 2008 and 2009 [2][3].</p> <p><strong>References: </strong>[1] Benkhoff, J., et al. (2010) <em>Planet. Space Sci. </em>58, 2-20. [2] Baker, D.N. et al. (2011) Planet. Space Sci 59, 2066-2074. [3] McNutt, R.L. et al. (2010), Acta Astronautica V67, Iss 7-8, p 681-687</p>


2021 ◽  
Author(s):  
Johannes Benkhoff ◽  
Joe Zender ◽  
Go Murakami ◽  
Elsa Montagnon

<p>BepiColombo was launched on 20 October 2018 from the European spaceport Kourou in French Guyana and is now on route to Mercury to unveil Mercury’s secrets. BepiColombo a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (Mio). It will perform measurements to increase our knowledge on the fundamental questions about Mercury’s evolution, composition, interior, magnetosphere, and exosphere.  </p><p>During its 7-year long journey to the innermost terrestrial planet Mio and MPO are connected to each on-top of the Mercury Transfer Module (MTM). The MTM contains a solar electric propulsion engine and will bring the two spacecraft to Mercury. In late 2025, this ‘stack’ configuration is abandoned, the MTM will be jettisoned and the individual elements spacecraft are brought in to their final Mercury orbit: 480x1500km for MPO, and 590x11640km for Mio.  </p><p>On its way BepiColombo with its state of the art and very comprehensive payload has several opportunities for scientific observations - during the cruise into the inner solar system and during its nine planetary flybys (one at Earth, two at Venus and six at Mercury). However, since the spacecraft is in a stacked configuration not all of the instruments can be operated during the cruise phase.</p><p>Some of the instruments have been already operated regularly or partially during the flybys in their “scientific” observation mode: e.g. the magnetometer (MPO-MAG), the accelerometer (ISA), the environmental sensor (BERM), the gamma-ray and neutron spectrometer (MGNS), the solar intensity x-ray and particle spectrometer (SIXS), the radio science experiment (MORE), using the X-band and the Ka-band, the thermal infrared spectrometer (MERTIS), the UV spectrometer (PHEBUS) and some sensors of the SERENA suite. Also, instruments or some parts of the instruments of the Japanese Mio spacecraft like the dust monitor (MDM), the plasma wave instrument (PWI), the particle and plasma experiments of MPPE and the magnetometer (MGF) were already successfully operated in their science modes. BepiColombo also took regular “selfie” images with their three monitoring cameras on the MTM. These cameras were also able to take a sequence of outreach images during the flybys at Earth and Venus in 2020. Other instruments such as cameras and NIR spectrometer (SIMBIO-SYS), the laser altimeter (BELA), the x-ray spectrometer (MIXS), and parts of the electron, neutron, and iron sensors of SERENA on MPO and MSASI and some dedicated sensors of PWI and MPPE are operational, but can only be used in their scientific modes after the Mercury in-orbit commissioning in early 2026 because their field of view is blocked by the underlying Transfer Module.</p><p>Despite the reduced instrument availability, scientific and engineering operations has been scheduled during the cruise phase, especially during the swing-bys. A status of the mission and instruments and a summary of first results from measurements taken during the first three years en route to Mercury will be given.</p>


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
J. Benkhoff ◽  
G. Murakami ◽  
W. Baumjohann ◽  
S. Besse ◽  
E. Bunce ◽  
...  

AbstractBepiColombo is a joint mission between the European Space Agency, ESA, and the Japanese Aerospace Exploration Agency, JAXA, to perform a comprehensive exploration of Mercury. Launched on $20^{\mathrm{th}}$ 20 th October 2018 from the European spaceport in Kourou, French Guiana, the spacecraft is now en route to Mercury.Two orbiters have been sent to Mercury and will be put into dedicated, polar orbits around the planet to study the planet and its environment. One orbiter, Mio, is provided by JAXA, and one orbiter, MPO, is provided by ESA. The scientific payload of both spacecraft will provide detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. Mercury is the planet closest to the Sun, the only terrestrial planet besides Earth with a self-sustained magnetic field, and the smallest planet in our Solar System. It is a key planet for understanding the evolutionary history of our Solar System and therefore also for the question of how the Earth and our Planetary System were formed.The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere, and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein’s theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload such that individual measurements can be interrelated and complement each other.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


2021 ◽  
Author(s):  
Julia Kubanek ◽  
Malcolm Davidson ◽  
Maurice Borgeaud ◽  
Shin-ichi Sobue ◽  
Takeo Tadono

<p>Within the “Cooperation for the Use of Synthetic Aperture Radar Satellites in Earth Science and Applications”, the Japanese Aerospace Exploration Agency (JAXA) and the European Space Agency (ESA) agreed to mutually share C-band data from ESA’s Sentinel-1 mission and L-band data from JAXA’s ALOS-2 PALSAR-2 mission over selected test sites. Applications include wetland monitoring, hurricanes, sea ice, snow water equivalent and surface deformation.</p><p>The aim of the collaboration is to develop a better understanding of the benefits of combining L- and C-band data over various areas and for the different thematic applications. The findings of the different European, Japanese and international projects will help to develop future SAR satellite missions, such as JAXA’s ALOS-4, and ESA’s Copernicus mission ROSE-L and Sentinel-1 Next Generation.</p><p>This presentation will give an overview of the ongoing ESA-JAXA cooperation and will show highlights and first results of the different test sites and applications.</p>


Author(s):  
David W. Deamer

This book describes a hypothetical process in which populations of protocells can spontaneously assemble and begin to grow and proliferate by energy- dependent polymerization. This might seem to be just an academic question pursued by a few dozen researchers as a matter of curiosity, but in the past three decades advances in engineering have reached a point where both NASA and the European Space Agency (ESA) routinely send spacecraft to other planetary objects in our solar system. A major question being pursued is whether life has emerged elsewhere than on Earth. The limited funds available to support such missions require decisions to be made about target priorities that are guided by judgment calls. These in turn depend on plausible scenarios related to the origin of life on habitable planetary surfaces. We know that other planetary bodies in our solar system have had or do have conditions that would permit microbial life to exist and perhaps even to begin. By a remarkable coincidence, the two most promising objects for extraterrestrial life happen to represent the two alternative scenarios described in this book: An origin of life in conditions of hydrothermal vents or an origin in hydrothermal fields. This final chapter will explore how these alternative views can guide our judgment about where to send future space missions designed as life-detection missions. Questions to be addressed: What is meant by habitability? Which planetary bodies are plausible sites for the origin of life? How do the hypotheses described in this book relate to those sites? There is healthy public interest in how life begins and whether it exists elsewhere in our solar system or on the myriad exoplanets now known to orbit other stars. This has fueled a series of films, television programs, and science fiction novels. Most of these feature extrapolations to intelligent life but a few, such as The Andromeda Strain, explore what might happen if a pathogenic organism from space began to spread to the human population. There is a serious and sustained scientific effort—SETI, or Search for Extraterrestrial Intelligence—devoted to finding an answer to this question.


2020 ◽  
Vol 237 ◽  
pp. 01008 ◽  
Author(s):  
Holger Baars ◽  
Alexander Geiß ◽  
Ulla Wandinger ◽  
Alina Herzog ◽  
Ronny Engelmann ◽  
...  

On 22nd August 2018, the European Space Agency (ESA) launched the first direct detection Doppler wind lidar into space. Operating at 355 nm and acquiring signals with a dual channel receiver, it allows wind observations in clear air and particle-laden regions of the atmosphere. Furthermore, particle optical properties can be obtained using the High Spectral Resolution Technique Lidar (HSRL) technique. Measuring with 87 km horizontal and 0.25-2 km vertical resolution between ground and up to 30 km in the stratosphere, the global coverage of Aeolus observations shall fill gaps in the global observing system and thus help improving numerical weather prediction. Within this contribution, first results from the German initiative for experimental Aeolus validation are presented and discussed. Ground-based wind and aerosol measurements from tropospheric radar wind profilers, Doppler wind lidars, radiosondes, aerosol lidars and cloud radars are utilized for that purpose.


Sign in / Sign up

Export Citation Format

Share Document