scholarly journals Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

2018 ◽  
Vol 10 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Mikko Peltoniemi ◽  
Mika Aurela ◽  
Kristin Böttcher ◽  
Pasi Kolari ◽  
John Loehr ◽  
...  

Abstract. In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1–3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862). Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

2017 ◽  
Author(s):  
Mikko Peltoniemi ◽  
Mika Aurela ◽  
Kristin Böttcher ◽  
Pasi Kolari ◽  
John Loehr ◽  
...  

Abstract. In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. Networked cameras can provide information about snow cover and vegetation status with a broad spatial coverage and high temporal resolution, and serve as ground truths to earth observations, and be useful for gap-filling of cloudy areas in earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen-science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1–3 cameras. Here, we document the network, basic camera information and access to images (see, https://doi.org/10.5281/zenodo.777952) in the permanent data repository (https://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series from cameras are consisted of half-hourly images collected between 2014 and 2016. Additionally, we present example colour index time series derived from image time series from two contrasting sites.


2019 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but it is strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease in the zone of interest. The objective of this study is to evaluate the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After two years of monitoring, we observe variability of SWI at different time scales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-trivial salinity profiles in open boreholes (step-wise profiles really reflect the presence of fresh water at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2020 ◽  
Vol 24 (4) ◽  
pp. 2121-2139 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but its imaging capabilities are strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease at the depths of interest. The objective of this study is to test the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After 2 years of monitoring, we observe variability of SWI at different timescales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-monotonic salinity profiles in open boreholes (step-wise profiles really reflect the presence of freshwater at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2021 ◽  
Author(s):  
Holger Virro ◽  
Giuseppe Amatulli ◽  
Alexander Kmoch ◽  
Longzhu Shen ◽  
Evelyn Uuemaa

Abstract. A major problem related to global water quality analysis and modelling has been the lack of available good quality and consistent water quality measurement datasets with a global spatial coverage. Current study aims to contribute into improving the global datasets on water quality by aggregating and harmonizing five national, continental and global datasets: CESI, GEMSTAT, GLORICH, WATERBASE and WQP. The GRQA compilation involved converting observation data from the five sources into a common format and harmonizing the corresponding metadata, flagging outliers, calculating time series characteristics and detecting duplicate observations from sources with a spatial overlap. The final dataset extends the spatial and temporal coverage of previously available water quality data and contains 42 parameters and over 16 million measurements around the globe covering the 1898–2020 time period. Metadata in the form of statistical tables, maps and figures are provided along with observation time series. The GRQA dataset, supplementary metadata and figures are available for download on the DataCite and OpenAire enabled repository of the University of Tartu, DataDOI, http://dx.doi.org/10.23673/re-273 (Virro et al., 2021).


2019 ◽  
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Knowledge on water and energy fluxes is a key for urban planning and design. Nevertheless, hydrological data for urban environments is sparse and as a result, many processes are still poorly understood and thus inadequately represented within models. We contribute to reduce this shortcoming by providing a dataset, which includes time series of soil moisture and soil temperature measured underneath 18 different permeable pavements (PPs) and 4 urban greenspaces located within the city of Freiburg (Germany). Time series were recorded with a high temporal resolution of 10 min with a total of 65 individual soil moisture sensors and cover a measuring period of 2 entire years (Nov. 2016 – Oct. 2018). The recorded time series contain valuable information on the soil hydrological behavior and demonstrate the effect of surface properties and surrounding urban structures on soil temperatures. In addition, we performed double-ring infiltration experiments, which in combination with the soil moisture measurements yielded soil hydrological parameters for the PPs including porosity, field capacity and infiltration capacity. We present this unique dataset, which is a valuable source of information for studying urban water and energy cycles. We encourage its usage in various ways e.g. for model calibration and validation purposes, to study thermal regimes of cities and to derive urban water and energy fluxes. The dataset is freely available at the FreiDok plus data repository at https://freidok.uni-freiburg.de/data/149321 and https://doi.org/10.6094/UNIFR/149321 (Schaffitel et al., 2019).


2021 ◽  
Vol 13 (18) ◽  
pp. 3618
Author(s):  
Stefan Dech ◽  
Stefanie Holzwarth ◽  
Sarah Asam ◽  
Thorsten Andresen ◽  
Martin Bachmann ◽  
...  

Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.


2020 ◽  
Author(s):  
Lars Uphus ◽  
Annette Menzel

<p>Using RGB camera data (e.g. webcams, wildlife cameras) has great potential to measure forest phenology over climate gradients, because of its very high temporal resolution, while at the same time being more objective and less time consuming than in situ observations. To make images useful for the purpose of measuring phenological events, such as Start of Season (SOS) and End of Season (EOS), there is need to derive Regions of Interest (ROI) objectively and (semi-)automatically. In order to answer this need, Bothmann et al. (2017) proposed a method which randomly sets a number of pinpricks in the image and calculates how greenness over time from all other pixels correlates to these different pinpricks. Subsequently, ROIs are created by discarding the pixels with low correlation, using multiple thresholds. Despite its advantage of being automated and more objective compared to prevailing expert-based ROIs, and therefore its potential applicability for phenological research using a large amount of cameras, the method has not been reproduced for this purpose so far. Therefore, we assess here how well this method is able to separate foliage of different deciduous species from evergreens and phenologically irrelevant components in time-lapse wildlife camera data and in that way how suitable it is in explaining variation in phenology over a temperature gradient. We used 73 Cuddleback wildlife cameras troughout Bavaria which were installed within nine quadrants of 6*6 kilometers spanning a temperature gradient of 2.5°C. Hourly taken images of deciduous forests in spring, summer and autumn 2019 were analysed. Half of them were facing canopy, and half of them were facing understory. We applied the principles of the method from Bothmann et al. (2017) and assigned the best matching ROI to foliage of <em>Fagus sylvatica</em> or other deciduous species. Within this ROI, mean Green Chromatic Coordinate (GCC), a greenness index, over all pixels within the ROI, was derived per time-stamp. Afterwards, a time-series was calculated on these GCC values and with a suitable combination of curve-fitting techniques, SOS and EOS were derived, expressed in Day of Year (DOY). We compared these SOS and EOS dates with weekly in situ observations of spring and autumn phenology, which were taken in the same quadrants. Despite that Bothmann's method was developed on a single tower-mounted scientific webcam which viewed on canopy from above, while we made use of wildlife cameras at 73 different locations facing either understory perpendicular or canopy from below, it was able to distinguish <em>F. sylvatica</em> and other deciduous foliage from phenologically less relevant information. Time-series derived from these ROIs were able to explain variability in phenology between understory and canopy and over the temperature gradient similarly and supplementary to in situ observations. </p>


2019 ◽  
Author(s):  
Marco Bongio ◽  
Ali Nadir Arslan ◽  
Cemal Melih Tanis ◽  
Carlo De Michele

Abstract. We explored the potentiality of time-lapse photography method to estimate the snow depth in boreal forested and alpine regions. Historically, the snow depth has been measured manually by rulers or snowboards, with a temporal resolution of once per day, and a time-consuming activity. In the last decades, ultrasonic and/or optical sensors have been developed to obtain automatic measurements with higher temporal resolution and accuracy, defining a network of sensors within each country. The Finnish Meteorological Institute Image processing tool (FMIPROT) is used to retrieve the snow depth from images of a snow stake on the ground collected by cameras. An “ad-hoc” algorithm based on the brightness difference between snowpack and stake’s markers has been developed. We illustrated three case studies (case study 1-Sodankylä Peatland, case study 2-Gressoney la Trinitè Dejola, and case study 3-Careser dam) to highlight potentialities and pitfalls of the method. The proposed method provides, respect to the existing methods, new possibilities and advantages in the estimation of snow depth, which can be summarized as follows: 1) retrieving the snow depth at high temporal resolution, and an accuracy comparable to the most common method (manual measurements); 2) errors or misclassifications can be identified simply with a visual observation of the images; 3) estimating the spatial variability of snow depth by placing more than one snow stake on the camera’s view; 4) concerning the well-known under catch problem of instrumental pluviometer, occurring especially in mountain regions, the snow water equivalent can be corrected using high-temporal digital images; 5) the method enables retrieval of snow depth in avalanche, dangerous and inaccessible sites, where there is in general a lack of data; 6) the method is cheap, reliable, flexible and easily extendible in different environments and applications. We analyzed cases in which this method can fail due to poor visibility conditions or obstruction on the camera’s view. Defining a simple procedure based on ensemble of simulations and a post processing correction we can reproduce a snow depth time series without biases. Root Mean Square Errors (RMSE) and Nash Sutcliffe Efficiency (NSE) are calculated for all three case studies comparing with both estimates from the FMIPROT and visual observations of images. For the case studies, we found NSE = 0.917 , 0.963, 0.916 respectively for Sodankylä, Gressoney and Careser. In terms of accuracy, the first case study gave better results (RMSE equal to 3.951 · 10−2 m, 5.242 · 10−2 m, 10.78 · 10−2 m, respectively). The worst performances occurred at Careser dam located at 2600 m a.s.l. where extreme weather conditions occur, strongly affecting the clarity of the images. For Sodankylä case study, we showed that the proposed method can improve the measurements obtained by a Campbell snow depth ultrasonic sensor. According to results, we provided also useful information about the proper geometrical configuration stake-camera and the related parameters, which allow to retrieve reliable snow depth time series.


2021 ◽  
Vol 15 (1) ◽  
pp. 369-387
Author(s):  
Marco Bongio ◽  
Ali Nadir Arslan ◽  
Cemal Melih Tanis ◽  
Carlo De Michele

Abstract. The capability of time-lapse photography to retrieve snow depth time series was tested. Historically, snow depth has been measured manually by rulers, with a temporal resolution of once per day, and it is a time-consuming activity. In the last few decades, ultrasonic and/or optical sensors have been developed to obtain automatic and regular measurements with higher temporal resolution and accuracy. The Finnish Meteorological Institute Image Processing Toolbox (FMIPROT) has been used to retrieve the snow depth time series from camera images of a snow stake on the ground by implementing an algorithm based on the brightness difference and contour detection. Three case studies have been illustrated to highlight potentialities and pitfalls of time-lapse photography in retrieving the snow depth time series: Sodankylä peatland, a boreal forested site in Finland, and Gressoney-La-Trinité Dejola and Careser Dam, two alpine sites in Italy. This study presents new possibilities and advantages in the retrieval of snow depth in general and snow depth time series specifically, which can be summarized as follows: (1) high temporal resolution – hourly or sub-hourly time series, depending on the camera's scan rate; (2) high accuracy levels – comparable to the most common method (manual measurements); (3) reliability and visual identification of errors or misclassifications; (4) low-cost solution; and (5) remote sensing technique – can be easily extended in remote and dangerous areas. The proper geometrical configuration between camera and stake, highlighting the main characteristics which each single component must have, has been proposed. Root mean square errors (RMSEs) and Nash–Sutcliffe efficiencies (NSEs) were calculated for all three case studies comparing with estimates from both the FMIPROT and visual inspection of images directly. The NSE values were 0.917, 0.963 and 0.916, while RMSEs were 0.039, 0.052 and 0.108 m for Sodankylä, Gressoney and Careser, respectively. In terms of accuracy, the Sodankylä case study gave better results. The worst performances occurred at Careser Dam located at 2600 m a.s.l., where extreme weather conditions and a low temporal resolution of the camera occur, strongly affecting the clarity of the images.


2019 ◽  
Vol 11 (15) ◽  
pp. 1789 ◽  
Author(s):  
Karina Wilgan ◽  
Muhammad Siddique ◽  
Tazio Strozzi ◽  
Alain Geiger ◽  
Othmar Frey

We compare tropospheric delays from Global Navigation Satellite Systems (GNSS) and Synthetic Aperture Radar (SAR) Interferometry (InSAR) in a challenging mountainous environment in the Swiss Alps, where strong spatial variations of the local tropospheric conditions are often observed. Tropospheric delays are usually considered to be an error for both GNSS and InSAR, and are typically removed. However, recently these delays are also recognized as a signal of interest, for example for assimilation into numerical weather models or climate studies. The GNSS and InSAR are techniques of complementary nature, as one has sparse spatial but high temporal resolution, and the other very dense spatial coverage but repeat pass of only a few days. This raises expectations for a combination of these techniques. For this purpose, a comprehensive comparison between the techniques must be first performed. Due to the relative nature of InSAR estimates, we compare the difference slant tropospheric delays ( d S T D ) retrieved from GNSS with the d S T D s estimated using Persistent Scatterer Interferometry (PSI) of 32 COSMO-SkyMed SAR images taken in a snow-free period from June to October between 2008 and 2013. The GNSS estimates calculated at permanent geodetic stations are interpolated to the locations of persistent scatterers using an in-house developed least-squares collocation software COMEDIE. The Pearson’s correlation coefficient between InSAR and GNSS estimates averaged over all acquisitions is equal to 0.64 and larger than 0.8 for approximately half of the layers. Better agreement is obtained mainly for days with high variability of the troposphere (relative to the tropospheric conditions at the time of the reference acquisition), expressed as standard deviations of the GNSS-based d S T D s. On the other hand, the most common feature for the days with poor agreement is represented by very stable, almost constant GNSS estimates. In addition, there is a weak correlation between the agreement and the water vapor values in the area, as well as with the number of stations in the closest vicinity of the study area. Adding low-cost L-1 only GPS stations located within the area of the study increases the biases for most of the dates, but the standard deviations between InSAR and GNSS decrease for the limited area with low-cost stations.


Sign in / Sign up

Export Citation Format

Share Document