scholarly journals Arctic sea surface height maps from multi-altimeter combination

2021 ◽  
Vol 13 (12) ◽  
pp. 5469-5482
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together, providing an unprecedented resolution for this type of product. Such high-resolution products are necessary to tackle some contemporaneous science questions in the basin. We use the adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa, thus removing the need to estimate a bias between open ocean and ice-covered areas. The usual processing approach, involving an empirical retracking algorithm on specular echoes, is applied on CryoSat-2 and Sentinel-3A synthetic aperture radar (SAR) mode echoes. SARAL/AltiKa also provides the baseline for the cross-calibration of CryoSat-2 and Sentinel-3A data. The final gridded fields cover all latitudes north of 50∘ N, on a 25 km EASE2 grid, with one grid every 3 d over 3 years from July 2016 to April 2019. When compared to tide gauge measurements available in the Arctic Ocean, the combined product exhibits a much better performance than mono-mission datasets with a mean correlation of 0.78 and a mean root-mean-square deviation (RMSd) of 5 cm. The effective temporal resolution of the combined product is 3 times better than a single mission analysis. This dataset can be downloaded from https://doi.org/10.24400/527896/a01-2020.001 (Prandi, 2020).

2021 ◽  
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset, based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together providing an unprecedented resolution for this type of products. The final gridded fields cover all latitudes north of 50° N, on a 25 km EASE2 grid, with one grid every three days over three years from July 2016 to April 2019. We use the Adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa thus removing the need to estimate a bias between open ocean an ice covered areas. SARAL/AltiKa also provides the baseline for the cross-calibation of CryoSat-2 and Sentinel-3A data. When compared to independent data, the combined product exhibits a much better performance than previously available datasets based on the analysis of a single mission.


2021 ◽  
Vol 13 (5) ◽  
pp. 831
Author(s):  
Jorge Vazquez-Cuervo ◽  
Chelle Gentemann ◽  
Wenqing Tang ◽  
Dustin Carroll ◽  
Hong Zhang ◽  
...  

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2018 ◽  
Vol 52 (4) ◽  
pp. 1817-1826 ◽  
Author(s):  
Rosie J. Chance ◽  
Jacqueline F. Hamilton ◽  
Lucy J. Carpenter ◽  
Sina C. Hackenberg ◽  
Stephen J. Andrews ◽  
...  

2012 ◽  
Vol 2 (4) ◽  
pp. 290-301 ◽  
Author(s):  
T. Hayden ◽  
E. Rangelova ◽  
M. G. Sideris ◽  
M. Véronneau

AbstractThe existing Canadian Geodetic Vertical Datum of 1928 (CGVD28) does not meet the needs of the modern user in terms of accuracy and accessibility. As a result, Canada plans to implement a geoid-based and global navigation satellite system (GNSS)-accessible vertical datum by 2013. One of the primary concerns in realizing this new vertical datum is to determine a W0 value that will represent the potential of the zero height surface. The objective of this study is to evaluate W0 by averaging the potential of points on the mean sea water surface utilizing tide gauge recordings and gravity field and steady-state ocean circulation explorer (GOCE)-based global geopotential models. In order to assess the performance of the GOCE-based models for the computation of W0, the models are extended with the high resolution gravitational model EGM2008. Regional gravimetric geoid models are also used for the estimation of W0. Additionally, local sea surface topography models are utilized in order to validate the W0 results at the tide gauges. Excluding the Arctic coast, the W0 values obtained from both tide gauges and oceanic sea surface topography models are not statistically different from the International Earth Rotation and Reference Systems Service (IERS) 2010 global conventional value 62636856.00 m2/s2.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
H. Bâki Iz

AbstractThis study proposes a new paradigm for assessing thermosteric effects of warming oceans at a tide gauge station. For demonstration, the trend due to the global thermosteric sea level at the Key West, FL tide gauge station was estimated using the tide gauge measurements and the global sea surface temperature anomalies that were represented by yearly distributed lags. A comparison of the estimate with the trend estimate from a descriptive model revealed that 0.7±0.1 mm/yr, (p<0.01), of the total trend 2.2±0.1 mm/yr (p<0.01) estimated using the descriptive model can be attributed to the global warming of the oceans during the last century at this station. The remaining 1.5±0.1 mm/yr, 70 percent of the total trend, is the lump sum estimate of the secular changes due to the eustatic, halosteric, and various local isostatic contributions.


2018 ◽  
Vol 31 (6) ◽  
pp. 2233-2252 ◽  
Author(s):  
Kaiqiang Deng ◽  
Song Yang ◽  
Mingfang Ting ◽  
Chundi Hu ◽  
Mengmeng Lu

The mid-Pacific trough (MPT), occurring in the upper troposphere during boreal summer, acts as an atmospheric bridge connecting the climate variations over Asia, the Pacific, and North America. The first (second) mode of empirical orthogonal function analysis of the MPT, which accounts for 20.3% (13.4%) of the total variance, reflects a change in its intensity on the southwestern (northeastern) portion of the trough. Both modes are significantly correlated with the variability of tropical Pacific sea surface temperature (SST). Moreover, the first mode is affected by Atlantic SST via planetary waves that originate from the North Atlantic and propagate eastward across the Eurasian continent, and the second mode is influenced by the Arctic sea ice near the Bering Strait by triggering an equatorward wave train over the northeast Pacific. A stronger MPT shown in the first mode is significantly linked to drier and warmer conditions in the Yangtze River basin, southern Japan, and the northern United States and wetter conditions in South Asia and northern China, while a stronger MPT shown in the second mode is associated with a drier and warmer southwestern United States. In addition, an intensified MPT (no matter whether in the southwestern or the northeastern portion) corresponds to more tropical cyclones (TCs) over the western North Pacific (WNP) and fewer TCs over the eastern Pacific (EP) in summer, which is associated with the MPT-induced ascending and descending motions over the WNP and the EP, respectively.


2021 ◽  
Author(s):  
Justino Martínez ◽  
Carolina Gabarró ◽  
Antonio Turiel ◽  
Verónica González-Gambau ◽  
Marta Umbert ◽  
...  

Abstract. Measuring salinity from space is challenging since the sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) is low (about 0.5 K / psu), while the SSS range in the open ocean is narrow (about 5 psu, if river discharge areas are not considered). This translates into a high accuracy requirement of the radiometer (about 2–3 K). Moreover, the sensitivity of the TB to SSS at cold waters is even lower (0.3 K / psu), making the retrieval of the SSS in the cold waters even more challenging. Due to this limitation, ESA launched a specific initiative in 2019, the Arctic+Salinity project (AO/1-9158/18/I-BG), to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product (Martínez et al., 2020) . The product consists of 9-day averaged maps in an EASE 2.0 grid of 25 km. The product is freely distributed from the Barcelona Expert Center (BEC, http://bec.icm.csic.es/) with the DOI number: 10.20350/digitalCSIC/12620. The major change in this new product is its improvement of the effective spatial resolution that permits better monitoring of the mesoscale structures (larger than 50 Km), which benefits the river discharges monitoring.


Sign in / Sign up

Export Citation Format

Share Document