scholarly journals Global patterns and drivers of soil total phosphorus concentration

2021 ◽  
Vol 13 (12) ◽  
pp. 5831-5846
Author(s):  
Xianjin He ◽  
Laurent Augusto ◽  
Daniel S. Goll ◽  
Bruno Ringeval ◽  
Yingping Wang ◽  
...  

Abstract. Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).

2021 ◽  
Author(s):  
Xianjin He ◽  
Laurent Augusto ◽  
Daniel S. Goll ◽  
Bruno Ringeval ◽  
Yingping Wang ◽  
...  

Abstract. Soils represent the largest phosphorus (P) reserves on land and determining the amount is a critical first step for identifying sites where ecosystem functioning is potentially limited by P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of the total P concentration of 5,275 distributed globally natural soils. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents, and ranged widely from 1.4 to 9,630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important. While global predictions of soil total P concentration increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Global soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).


2003 ◽  
Vol 83 (1) ◽  
pp. 73-87 ◽  
Author(s):  
S. Beauchemin ◽  
R. R. Simard ◽  
M. A. Bolinder ◽  
M. C. Nolin ◽  
D. Cluis

Subsurface drainage systems can be a significant pathway for P transfer from some soils to surface waters. The objective of the study was to determine P concentration in tile-drainage water and its relationship to P status in surface soils (A horizons) from an intensively cultivated area in the Montreal Lowlands. The profiles of 43 soil units were characterized for their P contents and pedogenic properties. Tile-drainage water P concentrations were monitored over a 3-y r period on a weekly basis on 10 soil units, and four times during each growing season for the other 33 units. The soil units were grouped into lower and higher P sorbing soils using multiple discriminant equations developed in an earlier related study. The A horizons of the lower P sorbing soils had an elevated P saturation degree [mean Mehlich(III) P/Al = 17%] associated with total P concentrations in tile-drainage water consistently greater than the surface water quality standard of 0.03 mg total P L-1. Conversely, low P concentrations in tile-drainage waters (< 0.03 mg L-1) and a moderate mean Mehlich(III) P/Al ratio of 8% were observed in the higher P sorbing soil group. Total P concentrations in drainage systems were significantly related to soil P status in surface soils. Grouping soils according to their P sorption capacities increased the power of prediction based on only one soil variable. However, accurate predictions in terms of drain P concentration can hardly be obtained unless large dataset and other factors related to field management practices and hydrology of the sites are also considered. Therefore, a better alternative to predict the risk of P leaching is to work in terms of risk classes and rely on a multiple factor index. Key words: Tile-drainage water, phosphorus, P transfer, P loss, degree of soil P saturation, phosphorus index


2021 ◽  
Author(s):  
Zhongming Han ◽  
Jianmin Shi ◽  
Jiayin Pang ◽  
Li Yan ◽  
Patrick M Finnegan ◽  
...  

Abstract Background and aims Phosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing allocation of P among foliar P fractions. Methods We carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster-growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomised complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate, and P allocated to major biochemical fractions in B. attenuata and B. sessilis. Key results The two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster-growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar. Conclusions The nutrient-allocation patterns in faster-growing opportunistic B. sessilis and slower-growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.


2017 ◽  
Vol 13 (2) ◽  
pp. 34-40
Author(s):  
Moniki Campos Janegitz

Species of the genusUrochloaare promising as cover crops inno tillagesystemsas a strategy to improve phosphorus availability and recyclingin the soil. The objective of this work was to evaluate the effectiveness of ruzigrassspeciesin enhancing soil-Pavailability. The experiment was conducted in a greenhouse in pots with soil,with five treatments: Urochloa brizanthacv. Marandu, U. decumbens, U. humidicolaandU.ruziziensis, plus one control treatment without Urochloa cultivation. The Urochloaplants were grown in PVC potsof 12.6 L and 50 days after emergence,dry matteryield, P concentration andP accumulation were evaluated. The soil wasseparatedinto rhizosphere and bulk soil and used to determination of P availability, microbial P and pH. Urochloas increased phosphorus availabilityand soil pH. U. ruziziensisshowed higher initial growth, higher dry matter yieldand higher P uptake.There was no differencebetweenspecies as toP concentrations in the plantand microbial P insoil. U. ruziziensiswas the species resulting inthe lowest level of soil P available,similar toU. humidicola.Cultivation of Urochloas increases thesoilphosphorus availability and changesitschemical characteristics. Comparingthe species studied, U. ruziziensiswould bethe best to improve soil P availability and cycling inthesoil.


Euphytica ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Jakob Eifler ◽  
Jürgen Enno Wick ◽  
Bernd Steingrobe ◽  
Christian Möllers

AbstractPhytic acid is the major organic phosphorus storage compound in rapeseed. Following oil extraction, the defatted meal is used in feed mixtures for livestock. However, monogastric pigs and chickens can only poorly metabolize phytate. Hence, their excrements are rich in phosphorus (P), which when applied as manure may lead to eutrophication of surface waters. The aim of the present study was to analyze the genetic variation for total and organic P concentration (i.e. mainly phytate) in rapeseed and to compare the results with soybean. Two sets of rapeseed material were tested in field experiments in different environments with varying soil P levels and harvested seeds were used for seed quality analysis. Results revealed significant genotypic differences in total seed P concentration, which ranged from 0.47 to 0.94%. Depending on the experiment, the heritability for total P concentration ranged from 52 to 93%. The organic P portion of total P concentration was above 90% for current rapeseed hybrids. In both sets, there was a significant positive correlation between seed protein and P concentration. A NIRS calibration for total P concentration in intact seeds showed in cross validation a standard error of 0.05% and a coefficient of determination of R2 = 0.83. Total P concentration of soybean seeds and meal was between 0.55 and 0.65%, and around 1.1% for rapeseed meal. Rapeseed meal had a twofold higher ratio of total P to nitrogen concentration as compared to soybean which could be considered adverse when the meal is used for feeding livestock.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105459
Author(s):  
Liuming Yang ◽  
Zhijie Yang ◽  
Xiaojian Zhong ◽  
Chao Xu ◽  
Yanyu Lin ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 326-334 ◽  
Author(s):  
J. Yuan ◽  
L. Wang ◽  
S. Wang ◽  
Y. Wang ◽  
H. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document