scholarly journals The CH-IRP data set: a decade of fortnightly data of δ<sup>2</sup>H and δ<sup>18</sup>O in streamflow and precipitation in Switzerland

2020 ◽  
Author(s):  
Maria Staudinger ◽  
Stefan Seeger ◽  
Barbara Herbstritt ◽  
Michael Stoelzle ◽  
Jan Seibert ◽  
...  

Abstract. The stable isotopes of oxygen and hydrogen, 2H and 18O, provide information on water flow pathways and hydrologic catchment functioning. Here a data set of time series data on precipitation and streamflow isotope composition in Swiss medium-sized catchments, CH-IRP, is presented that is unique in terms of its long-term multi-catchment coverage along an alpine to pre-alpine gradient. The data set comprises fortnightly time series of both δ2H and δ18O as well as Deuterium excess from streamflow for 23 sites in Switzerland, together with summary statistics of the sampling at each station. Furthermore, time series of δ18O and δ2H in precipitation are provided for each catchment derived from interpolated datasets from the NISOT, GNIP and ANIP networks. For each station we compiled relevant metadata describing both the sampling conditions as well as catchment characteristics and climate infomation. Lab standards and errors are provided, and potentially problematic measurements are indicated to help the user decide on the applicability for individual study purposes. For the future, it is planned that the measurements will be continued at 14 stations as a long-term isotopic measurement network and the CH-IRP data set will, thus, be continuously be extended. The data set can be downloaded from data repository zenodo https://doi.org/10.5281/zenodo.3659679 (Staudinger et al., 2020).

2020 ◽  
Vol 12 (4) ◽  
pp. 3057-3066
Author(s):  
Maria Staudinger ◽  
Stefan Seeger ◽  
Barbara Herbstritt ◽  
Michael Stoelzle ◽  
Jan Seibert ◽  
...  

Abstract. The stable isotopes of oxygen and hydrogen, 18O and 2H, provide information on water flow pathways and hydrologic catchment functioning. Here a data set of time series data on precipitation and streamflow isotope composition in medium-sized Swiss catchments, CH-IRP, is presented that is unique in terms of its long-term multi-catchment coverage along an alpine to pre-alpine gradient. The data set comprises fortnightly time series of both δ2H and δ18O as well as deuterium excess from streamflow for 23 sites in Switzerland, together with summary statistics of the sampling at each station. Furthermore, time series of δ18O and δ2H in precipitation are provided for each catchment derived from interpolated data sets from the ISOT, GNIP and ANIP networks. For each station we compiled relevant metadata describing both the sampling conditions and catchment characteristics and climate information. Lab standards and errors are provided, and potentially problematic measurements are indicated to help the user decide on the applicability for individual study purposes. For the future, the measurements are planned to be continued at 14 stations as a long-term isotopic measurement network, and the CH-IRP data set will, thus, continuously be extended. The data set can be downloaded from data repository Zenodo at https://doi.org/10.5281/zenodo.4057967 (Staudinger et al., 2020).


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


2017 ◽  
Author(s):  
Easton R White

Long-term time series are necessary to better understand population dynamics, assess species' conservation status, and make management decisions. However, population data are often expensive, requiring a lot of time and resources. When is a population time series long enough to address a question of interest? We determine the minimum time series length required to detect significant increases or decreases in population abundance. To address this question, we use simulation methods and examine 878 populations of vertebrate species. Here we show that 15-20 years of continuous monitoring are required in order to achieve a high level of statistical power. For both simulations and the time series data, the minimum time required depends on trend strength, population variability, and temporal autocorrelation. These results point to the importance of sampling populations over long periods of time. We argue that statistical power needs to be considered in monitoring program design and evaluation. Time series less than 15-20 years are likely underpowered and potentially misleading.


Media Ekonomi ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 83
Author(s):  
Jumadin Lapopo

<p>Poverty is being a problem in all developing countries including Indonesia. Among goverment programs, poverty has become the center offattention in policy at both of the regional and national levels. Looking at thephenomenon of poverty, Islam present with solution to reduce poverty through Zakat. This study aims to analyze the effect of ZIS and Zakat Fitrah against poverty in Indonesia in 1998 until 2010, data used in this study is secondary data and uses time series data, for the dependent variabel is poverty and for independent variables are ZIS and Zakat Fitrah. The analysis tools used in this study is to use multiple regression analysis model and the assumptions of classical test using the software Eviews-4. In this study also concluded that the ZIS variables significantly affect to the reduction of poverty in Indonesia although the effect is very small. In the variable Zakat Fitrah not significantly affect poverty reduction in Indonesia because of the nature of Zakat Fitrah is for consumption and not for long-term needs. The results of this study can be used for the management of zakat to be able to develop the management and to get a better system for distribution of zakat so that the main purpose of zakat can be achieved to reduce poverty.<br />Keywords : Poverty, Zakat Fitrah, ZIS.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jia Chaolong ◽  
Xu Weixiang ◽  
Wang Futian ◽  
Wang Hanning

The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM(1,1)is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.


Sign in / Sign up

Export Citation Format

Share Document