scholarly journals CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain

Author(s):  
Gemma Coxon ◽  
Nans Addor ◽  
John P. Bloomfield ◽  
Jim Freer ◽  
Matt Fry ◽  
...  

Abstract. We present the first large-sample catchment hydrology dataset for Great Britain, CAMELS-GB (Catchment Attributes and MEteorology for Large-sample Studies). CAMELS-GB collates river flows, catchment attributes and catchment boundaries from the UK National River Flow Archive together with a suite of new meteorological timeseries and catchment attributes. These data are provided for 671 catchments that cover a wide range of climatic, hydrological, landscape and human management characteristics across Great Britain. Daily timeseries covering 1970–2015 (a period including several hydrological extreme episodes) are provided for a range of hydro-meteorological variables including rainfall, potential evapotranspiration, temperature, radiation, humidity and river flow. A comprehensive set of catchment attributes are quantified including topography, climate, hydrology, land cover, soils and hydrogeology. Importantly, we also derive human management attributes (including attributes summarising abstractions, returns and reservoir capacity in each catchment), as well as attributes describing the quality of the flow data including the first set of discharge uncertainty estimates for Great Britain. CAMELS-GB (Coxon et al, 2020; available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9) is intended for the community as a publicly available, easily accessible dataset to use in a wide range of environmental and modelling analyses.

2020 ◽  
Vol 12 (4) ◽  
pp. 2459-2483 ◽  
Author(s):  
Gemma Coxon ◽  
Nans Addor ◽  
John P. Bloomfield ◽  
Jim Freer ◽  
Matt Fry ◽  
...  

Abstract. We present the first large-sample catchment hydrology dataset for Great Britain, CAMELS-GB (Catchment Attributes and MEteorology for Large-sample Studies). CAMELS-GB collates river flows, catchment attributes and catchment boundaries from the UK National River Flow Archive together with a suite of new meteorological time series and catchment attributes. These data are provided for 671 catchments that cover a wide range of climatic, hydrological, landscape, and human management characteristics across Great Britain. Daily time series covering 1970–2015 (a period including several hydrological extreme events) are provided for a range of hydro-meteorological variables including rainfall, potential evapotranspiration, temperature, radiation, humidity, and river flow. A comprehensive set of catchment attributes is quantified including topography, climate, hydrology, land cover, soils, and hydrogeology. Importantly, we also derive human management attributes (including attributes summarising abstractions, returns, and reservoir capacity in each catchment), as well as attributes describing the quality of the flow data including the first set of discharge uncertainty estimates (provided at multiple flow quantiles) for Great Britain. CAMELS-GB (Coxon et al., 2020; available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9) is intended for the community as a publicly available, easily accessible dataset to use in a wide range of environmental and modelling analyses.


2012 ◽  
Vol 5 ◽  
Author(s):  
Paolo Muntoni

The United Kingdom has always been receptive to the Danish composer Carl Nielsen. For a long time Great Britain was the only country outside Scandinavia to show interest in his works, which met both the favour of the public and the appreciation of critics. No other country has produced such a comprehensive list of articles, studies and reviews about Nielsen’s music. An overview of the commentaries on Nielsen’s most performed works, namely the Fourth and Fifth Symphony, published on two major British newspapers – The Times and The Guardian – documents how the opinion on his music constantly changed. Critiques range from an initial enthusiastic acclaim to a half-hearted appreciation, and later to revaluation and revival. An analysis of a selected work, the Sixth Symphony, sheds light on the breadth and variety of what can be now considered a well-established research tradition. Robert Simpson pioneered such research in the 1950’s, but it was during the last decade of the 20 th century that the most interesting developments unfolded. Despite the wide range of interpretations, it is possible to track within British research on Carl Nielsen some underlying features that, in interplay with other factors, can help to explain the composer’s popularity in the UK.


2020 ◽  
Author(s):  
Kathryn Lee ◽  
Rowan Vernon ◽  
Chris Williams ◽  
Andres Payo Garcia ◽  
Jonathan Lee

<p>Coastal erosion and flooding are an increasing issue in Great Britain and pose a significant threat to people living and working in coastal environments, as well as the associated threats to infrastructure and assets. Recent storms, including Storm Callum in 2018, Storm Frank in 2014 and the east coast tidal surge in 2013, have highlighted these issues and caused widespread flooding, power outages and travel disruption. Repairs to homes, buildings, infrastructure and coastal defences cost tens of millions of pounds and took several months to complete with disruption to life, livelihoods and the national economy continuing long after the events.  </p><p>The geomorphological variability of Great Britain’s ca. 11,000 mile long coastline, from steep, hard cliffs to weak, easily erodible cliffs and wide flat estuaries, is challenging to represent and therefore consider in a modelling environment. Consequently, the variability, particularly in cliff geology, lithology and rock properties, is often under-represented in coastal modelling and coastal management planning. This results in potentially critical factors such as cliff complexity (e.g. multiple lithologies, jointing and bedding structures, permeability), cliff morphology, and the coastal buffer, being overlooked, all of which can influence the way coastal landforms respond to changing climatic drivers. Finding an accessible, objective and multi-scaled way of communicating this variability to a wide range of coastal practitioners is important in helping to address coastal vulnerability and increase resilience regionally and nationally.</p><p>Using a novel partitional clustering approach, we have developed a new classification system for the coastline of Great Britain, which divides the coastline into specific domains based on a range of physical variables. This method combines data available from the existing BGS Coastal Vulnerability Dataset which includes geology type, cliff strength, foreshore environment and inundation potential. In addition, open source datasets, including wave power and height, tide height and tidal current speed, have been incorporated. The datasets have been attributed to ca. 4 million transects at 5 m intervals along the coastline. Effective multivariate clustering data driven techniques, with expert assessment, have been used to cluster the dataset in an iterative way. This approach enables the capture of the thoughts and processes that we as geomorphologists consider when comparing one coastal area with another and will provide a tool for communicating variability in the coast and its resilience to erosion and flooding.</p><p>This is the first time such a method has been applied nationally in Great Britain and will provide a potential new benchmark for describing the GB coastline and the changes that it may be subject to. The resulting coastal domains dataset will soon be made available to practitioners in the UK and will assist in making more informed decisions when considering coastal management.</p>


2020 ◽  
Author(s):  
Gemma Coxon ◽  
Nans Addor ◽  
Camila Alvarez-Garreton ◽  
Hong X. Do ◽  
Keirnan Fowler ◽  
...  

<p>Large-sample hydrology (LSH) relies on data from large sets (tens to thousands) of catchments to go beyond individual case studies and derive robust conclusions on hydrological processes and models and provide the foundation for improved understanding of the link between catchment characteristics, climate and hydrological responses. Numerous LSH datasets have recently been released, covering a wide range of regions and relying on increasingly diverse data sources to characterize catchment behaviour. These datasets offer novel opportunities for open hydrology, yet they are also limited by their lack of comparability, accessibility, uncertainty estimates and characterization of human impacts.</p><p>Here, we underscore the key role of LSH datasets in open hydrologic science and highlight their potential to enhance the transparency and reproducibility of hydrological studies.  We provide a review of current LSH datasets and identify their limitations, including the current difficulties of inter-dataset comparison and limited accessibility of hydrological observations. To overcome these limitations, we propose simple guidelines alongside long-term coordinated actions for the community, which aim to standardize and automatize the creation of LSH datasets worldwide. This presentation will highlight how, by producing and using common LSH datasets, the community can increase the comparability and reproducibility of hydrological research.</p><p>This research was performed as part of the Panta Rhei Working Group on large-sample hydrology and is based on https://doi.org/10.1080/02626667.2019.1683182.</p>


2013 ◽  
Vol 10 (1) ◽  
pp. 597-624 ◽  
Author(s):  
C. Prudhomme ◽  
J. Williamson

Abstract. Potential evapotranspiration PET is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from twelve equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961–1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman-Monteith equations reproduce best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically-based FAO56 equations are used. Percentage changes in PET between the 1961–1990 and 2041–2070 time slices were also calculated for each of the twelve PET equations. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen-Hense and calibrated Blaney-Criddle methods systematically projecting the largest increases across GB for all months and Priestley-Taylor, Makkink and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as when driven by HadRM3-Q0 climate data this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961–1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of twelve PET equations. The changes show a clear northwest-southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncetainty is perhaps one of the greatest challenges facing the assessment of climate change impact on hydrology.


2021 ◽  
Author(s):  
J. Hannaford ◽  
N. Mastrantonas ◽  
G. Vesuviano ◽  
S. Turner

Abstract A cluster of recent floods in the UK has prompted significant interest in the question of whether floods are becoming more frequent or severe over time. Many trend assessments have addressed this in recent decades, typically concluding that there is evidence for positive trends in flood magnitude at the national scale. However, trend testing is a contentious area, and the resilience of such conclusions must be tested rigorously. Here, we provide a comprehensive assessment of flood magnitude trends using the UK national flood dataset (NRFA Peak Flows). Importantly, we assess trends using this full dataset as well as a subset of near-natural catchments with high-quality flood data to determine how climate-driven trends compare with those from the wider dataset that are subject to a wide range of human disturbances and data limitations. We also examine the sensitivity of reported trends to changes in study time window using a ‘multitemporal’ analysis. We find that the headline claim of increased flooding generally holds up regionally to nationally, although we show a much more complicated picture of spatio-temporal variability. While some reported trends, such as increasing flooding in northern and western Britain, appear to be robust, trends in other regions are more mixed spatially and temporally – for example, trends in recent decades are not necessarily representative of longer-term change, and within regions (e.g. in southeast England) increasing and decreasing trends can be found in close proximity. While headline conclusions are useful for advancing national flood-risk policy, for flood-risk estimation, it is important to unpack these local changes, and the results and methodological toolkit provided here could provide such supporting information to practitioners.


2012 ◽  
Vol 4 (1) ◽  
pp. 143-148 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. The dataset Future Flows Climate was developed as part of the project ''Future Flows and Groundwater Levels'' to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. Future Flows Climate is derived from the Hadley Centre's ensemble projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as netCDF files. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman-Monteith equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. Future Flows Climate is freely available for non-commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797.


2018 ◽  
Author(s):  
Eleanor M. Blyth ◽  
Alberto Martinez-de la Torre ◽  
Emma L. Robinson

Abstract. In a warming climate, the water budget of the land is subject to varying forces such as increasing evaporative demand, mainly through the increased temperature, and changes to the precipitation, which might go up or down. Using a verified, physically based model with 55 years of observation-based meteorological forcing, an analysis of the water budget demonstrates that Great Britain is getting warmer and wetter. Increases in precipitation (3.0 ± 2.0 mm yr−1 yr−1) and air temperature (0.20 ± 0.13 K decade−1) are driving increases in river flow (2.16 mm yr−1 yr−1) and evapotranspiration (0.87 mm yr−1 yr−1), with no significant trend in the soil moisture. The change in evapotranspiration is roughly constant across the regions whereas runoff varies greatly between regions: the biggest change is seen in Scotland (4.56 mm yr−1 yr−1), where precipitation increases were also the greatest (5.4 ± 3.0 mm yr−1 yr−1) and smallest trend (0.29 mm yr−1 yr−1) is seen in the English Lowlands (East Anglia and Midlands), where the increase in rainfall is not statistically significant (1.1 ± 0.7 mm yr−1 yr−1). Relative to their contribution to the evapotranspiration budget, the increase in interception is higher than the other components. This is due to the fact that it correlates strongly with precipitation which is seeing a greater increase than the potential evapotranspiration. This leads to a higher increase in actual evapotranspiration that the potential evapotranspiration, and a negligible increase in soil moisture or groundwater store.


2012 ◽  
Vol 5 (1) ◽  
pp. 475-490 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. 1. The dataset Future Flows Climate was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable for climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. 2. Future Flows Climate is derived from the Hadley Centre's ensemble Projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as NetCDF files. 3. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman Montieth equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. 4. Future Flows Climate is freely available for non commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. 5. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797


Sign in / Sign up

Export Citation Format

Share Document