scholarly journals Future Flows Climate: an ensemble of 1-km climate change projections for hydrological application in Great Britain

2012 ◽  
Vol 5 (1) ◽  
pp. 475-490 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. 1. The dataset Future Flows Climate was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable for climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. 2. Future Flows Climate is derived from the Hadley Centre's ensemble Projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as NetCDF files. 3. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman Montieth equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. 4. Future Flows Climate is freely available for non commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. 5. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797

2012 ◽  
Vol 4 (1) ◽  
pp. 143-148 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. The dataset Future Flows Climate was developed as part of the project ''Future Flows and Groundwater Levels'' to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. Future Flows Climate is derived from the Hadley Centre's ensemble projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as netCDF files. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman-Monteith equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. Future Flows Climate is freely available for non-commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797.


2012 ◽  
Vol 5 (2) ◽  
pp. 1159-1178 ◽  
Author(s):  
C. Prudhomme ◽  
T. Haxton ◽  
S. Crooks ◽  
C. Jackson ◽  
A. Barkwith ◽  
...  

Abstract. The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.


2013 ◽  
Vol 5 (1) ◽  
pp. 101-107 ◽  
Author(s):  
C. Prudhomme ◽  
T. Haxton ◽  
S. Crooks ◽  
C. Jackson ◽  
A. Barkwith ◽  
...  

Abstract. The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b


2013 ◽  
Vol 10 (1) ◽  
pp. 597-624 ◽  
Author(s):  
C. Prudhomme ◽  
J. Williamson

Abstract. Potential evapotranspiration PET is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from twelve equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961–1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman-Monteith equations reproduce best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically-based FAO56 equations are used. Percentage changes in PET between the 1961–1990 and 2041–2070 time slices were also calculated for each of the twelve PET equations. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen-Hense and calibrated Blaney-Criddle methods systematically projecting the largest increases across GB for all months and Priestley-Taylor, Makkink and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as when driven by HadRM3-Q0 climate data this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961–1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of twelve PET equations. The changes show a clear northwest-southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncetainty is perhaps one of the greatest challenges facing the assessment of climate change impact on hydrology.


2013 ◽  
Vol 17 (4) ◽  
pp. 1365-1377 ◽  
Author(s):  
C. Prudhomme ◽  
J. Williamson

Abstract. Potential evapotranspiration (PET) is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from 12 equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961–1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman–Monteith equations reproduces best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically based FAO56 equations are used. Percentage changes in PET between the 1961–1990 and 2041–2070 time slices were also calculated for each of the 12 PET equations from HadRM3-Q0. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen–Haise and calibrated Blaney–Criddle methods systematically projecting the largest increases across GB for all months and Priestley–Taylor, Makkink, and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as, when driven by HadRM3-Q0 climate data, this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961–1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of 12 PET equations. The changes show a clear northwest–southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncertainty is a challenge facing the assessment of climate change impact on hydrology mostly ignored up to now.


2020 ◽  
Vol 12 (4) ◽  
pp. 2459-2483 ◽  
Author(s):  
Gemma Coxon ◽  
Nans Addor ◽  
John P. Bloomfield ◽  
Jim Freer ◽  
Matt Fry ◽  
...  

Abstract. We present the first large-sample catchment hydrology dataset for Great Britain, CAMELS-GB (Catchment Attributes and MEteorology for Large-sample Studies). CAMELS-GB collates river flows, catchment attributes and catchment boundaries from the UK National River Flow Archive together with a suite of new meteorological time series and catchment attributes. These data are provided for 671 catchments that cover a wide range of climatic, hydrological, landscape, and human management characteristics across Great Britain. Daily time series covering 1970–2015 (a period including several hydrological extreme events) are provided for a range of hydro-meteorological variables including rainfall, potential evapotranspiration, temperature, radiation, humidity, and river flow. A comprehensive set of catchment attributes is quantified including topography, climate, hydrology, land cover, soils, and hydrogeology. Importantly, we also derive human management attributes (including attributes summarising abstractions, returns, and reservoir capacity in each catchment), as well as attributes describing the quality of the flow data including the first set of discharge uncertainty estimates (provided at multiple flow quantiles) for Great Britain. CAMELS-GB (Coxon et al., 2020; available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9) is intended for the community as a publicly available, easily accessible dataset to use in a wide range of environmental and modelling analyses.


Author(s):  
René Garreaud ◽  
Camila Alvarez-Garreton ◽  
Jonathan Barichivich ◽  
Juan Pablo Boisier ◽  
Duncan Christie ◽  
...  

Abstract. Since 2010 an uninterrupted sequence of dry years, with annual rainfall deficits ranging from 25 to 45 %, has prevailed in Central Chile (western South America, 30–38° S). Although intense 1- or 2-year droughts are recurrent in this Mediterranean-like region, the ongoing event stands out because of its longevity and large spatial extent. The extraordinary character of the so-called Central Chile Mega Drought (MD) was established against century long historical records and a millennial tree-ring reconstruction of regional precipitation. The largest MD-averaged rainfall relative anomalies occurred in the northern, semi-arid sector of central Chile but the event was unprecedented to the south of 35° S. ENSO neutral conditions have prevailed since 2011 (but for the strong El Niño 2015) contrasting with La Niña conditions that often accompanied past droughts. The precipitation deficit diminished the Andean snowpack and resulted in amplified declines (up to 90 %) of river flow, reservoir volumes and groundwater levels along central Chile and westernmost Argentina. In some semiarid basins we also found a conspicuous decrease in the runoff-to-rainfall coefficient. A substantial decrease in vegetation productivity occurred in the shrubland-dominated, northern sector, but a mix of greening and browning patches occurred farther south where irrigated croplands and exotic forest plantations dominate. The ongoing warming in central Chile, making the MD one of the warmest 6-year period on record, may have also contributed to such complex vegetation changes by increasing potential evapotranspiration. The understanding of the nature and biophysical impacts of the MD contributes to preparedness efforts to face a dry, warm future regional climate scenario.


Author(s):  
William Gribb ◽  
Henry Harlow

Beavers are a keystone species in Grand Teton National Park and are critical to the aquatic and terrestrial landscape. Modifications to their habitat by climate change impact multiple species. This study is designed to examine the current distribution and habitat of beavers in Grand Teton National Park and analyze the alterations to this distribution and habitat based on climate change. Field and aerial surveys were completed to determine the distribution of beaver colonies in Grand Teton National Park. Beaver habitat was constructed by integrating field surveys of vegetation, soils and hydrologic characteristics with satellite imagery classification. A model of climate change was utilized in an effort to distinguish potentially different rates of temperature and precipitation change into the 21st century. The results of the climate model were then integrated into a watershed assessment model to determine stream flow in the Snake River basin. The decreasing flow rates are critical to beaver habitat for cottonwoods and willow species and beaver settlement and movement and will limit their movement. In addition, the Snake River below Jackson Lake Dam is regulated for irrigation into Idaho and the decreasing flows on the Snake River below the Jackson Lake Dam will also impact water availability for beaver habitats. Decreases in precipitation availability will increase irrigation demand causing changes in the Snake River flow patterns. Management conflicts exist between preserving and maintaining beaver habitat in the national park and meeting the irrigation


2009 ◽  
Vol 1 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Marian Melo ◽  
Milan Lapin ◽  
Ingrid Damborska

Abstract In this paper methods of climate-change scenario projection in Slovakia for the 21st century are outlined. Temperature and precipitation time series of the Hurbanovo Observatory in 1871-2007 (Slovak Hydrometeorological Institute) and data from four global GCMs (GISS 1998, CGCM1, CGCM2, HadCM3) are utilized for the design of climate change scenarios. Selected results of different climate change scenarios (based on different methods) for the region of Slovakia (up to 2100) are presented. The increase in annual mean temperature is about 3°C, though the results are ambiguous in the case of precipitation. These scenarios are required by users in impact studies, mainly from the hydrology, agriculture and forestry sectors.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2342
Author(s):  
Axel Flinck ◽  
Nathalie Folton ◽  
Patrick Arnaud

Low water levels are a seasonal phenomenon, which can be long, short, and more or less intense, affecting entire watercourses. This phenomenon has become a concern for many countries who seek better understanding of the processes that affect it and learn how to optimally manage water resources (pumping, irrigation). Consequently, a lumped rainfall model at daily time step (GR) has been defined, calibrated, and regionalised over French territories. The input data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data throughout the French territory. This model could be improved, in particular to more accurately simulate the hydrological response of watersheds interacting with groundwater. The idea is to use piezometric data from the ADES bank, available in France, and to use it for the calibration phase of the hydrological model. The analysis was carried out across ten French catchments that are representative of various hydrometeorological behaviours and are located in a diverse hydrogeological context. Each catchment must be represented by a piezometer that closely represents the main aquifer that interacts with the basin. This piezometer is located on part of the watershed that is most covered in terms of its drainage network, and closest to its outlet. Different signal processing methods are used to characterise the relationship between the fluctuation of river flow, piezometric levels and rainfall time series. Potential processing methods will be carried out in the temporal domain. To quantify groundwater table inertia and that of the catchment area, correlograms were calculated from daily chronicles of flows and piezometric levels. A cross-correlatory analysis was set up to see, in more detail, the correlations between the flow rates (especially base flows) and piezometric level time series. This type of analysis makes it possible to study relationships between various observations, and tests were carried out to take this information into account during the phase of the calibration of hydrological model parameters. These different analyses will hopefully help us to use piezometric data to consolidate the quality and robustness of the modelling.


Sign in / Sign up

Export Citation Format

Share Document