scholarly journals Expanding the limits of laser-ablation U–Pb calcite geochronology

Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 343-354
Author(s):  
Andrew R. C. Kylander-Clark

Abstract. U–Pb geochronology of calcite by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is an emerging field with potential to solve a vast array of geologic problems. Because of low levels of U and Pb, measurement by more sensitive instruments, such as those with multiple collectors (MCs), is advantageous. However, whereas measurement of traditional geochronometers (e.g., zircon) by MC-ICPMS has been limited by detection of the daughter isotope, U–Pb dating of calcite can be limited by detection of the parent isotope if measured on a Faraday detector. The Nu P3D MC-ICPMS employs a new detector array to measure all isotopes of interest on Daly detectors. A new method, described herein, utilizes the low detection limit and high dynamic range of the Nu P3D for calcite U–Pb geochronology and compares it with traditional methods. Data from natural samples indicate that measurement of 238U by Daly is advantageous at count rates < 30 000; this includes samples low in U or those necessitating smaller spots. Age precision for samples run in this mode are limited by 207Pb counts and the maximum U ∕ Pbc. To explore these limits – i.e., the minimum U, Pb, and U ∕ Pb ratios that can be measured by LA-ICPMS – a model is created and discussed; these models are meant to serve as a guide to evaluate potential candidate materials for geochronology. As an example, for samples necessitating a < 1 Ma uncertainty, a minimum of ∼ 10 ppb U is needed at a spot size of 100 µm and rep rate of 10 Hz; absolute uncertainty scales roughly with U concentration.

2020 ◽  
Author(s):  
Andrew R. C. Kylander-Clark

Abstract. U-Pb geochronology of calcite by laser-ablation inductively-coupled mass spectrometry (LA-ICMPS) is an emerging field with potential to solve a vast array of geologic problems. Because of low levels of U and Pb, measurement by more sensitive instruments, such as those with multiple collectors (MC), is advantageous. However, whereas measurement of traditional geochronometers (e.g., zircon) by MC-ICPMS has been limited by detection of the daughter isotope, U-Pb dating of calcite can be limited by detection of the parent isotope, if measured on a Faraday detector. The Nu P3D MC-ICPMS employs a new detector array to measure all isotopes of interest on Daly detectors. A new method, described herein, utilizes the low detection limit and high dynamic range of the Nu P3D for calcite U-Pb geochronology, and compares it with traditional methods. A model is created to explore the limits of U, Pb, and U/Pb ratios that can be measured by LA-ICPMS and can serve as a guide to evaluate potential candidate materials for geochronology.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


2016 ◽  
Vol 31 (4) ◽  
pp. 1030-1033 ◽  
Author(s):  
J. S. Hamilton ◽  
E. L. Gorishek ◽  
P. M. Mach ◽  
D. Sturtevant ◽  
M. L. Ladage ◽  
...  

A new single Peltier element ablation cell is described and its applicability to biological sampling discussed to evaluate its performance.


Sign in / Sign up

Export Citation Format

Share Document