scholarly journals The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet

2018 ◽  
Vol 11 (12) ◽  
pp. 5003-5025 ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas ◽  
Catherine Ritz ◽  
Vincent Peyaud ◽  
Didier M. Roche

Abstract. In this paper, we present the GRISLI (Grenoble ice sheet and land ice) model in its newest revision (version 2.0). Whilst GRISLI is applicable to any given ice sheet, we focus here on the Antarctic ice sheet because it highlights the importance of grounding line dynamics. Important improvements have been implemented in the model since its original version (Ritz et al., 2001). Notably, GRISLI now includes a basal hydrology model and an explicit flux computation at the grounding line based on the analytical formulations of Schoof (2007) or Tsai et al. (2015). We perform a full calibration of the model based on an ensemble of 300 simulations sampling mechanical parameter space using a Latin hypercube method. Performance of individual members is assessed relative to the deviation from present-day observed Antarctic ice thickness. To assess the ability of the model to simulate grounding line migration, we also present glacial–interglacial ice sheet changes throughout the last 400 kyr using the best ensemble members taking advantage of the capacity of the model to perform multi-millennial long-term integrations. To achieve this goal, we construct a simple climatic perturbation of present-day climate forcing fields based on two climate proxies: atmospheric and oceanic. The model is able to reproduce expected grounding line advances during glacial periods and subsequent retreats during terminations with reasonable glacial–interglacial ice volume changes.

2018 ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas ◽  
Catherine Ritz ◽  
Vincent Peyaud ◽  
Didier M. Roche

Abstract. In this paper we present the GRISLI (Grenoble Ice Sheet and Land Ice) model in its newest revision (version 2.0). Whilst GRISLI is applicable to any given geometry, we focus here on the Antarctic ice sheet because it highlights the importance of grounding line dynamics. Important improvements have been implemented since its original version (Ritz et al., 2001) including notably an explicit flux computation at the grounding line based on the analytical formulations of Schoof (2007) and Tsai et al. (2015) and a basal hydrology model. A calibration of the mechanical parameters of the model based on an ensemble of 150 members sampled with a Latin Hypercube method is used. The ensemble members performance is assessed relative to the deviation from present-day observed Antarctic ice thickness. The model being designed for multi-millenial long- term integrations, we also present glacial-interglacial ice sheet changes throughout the last 400 kyr using the best ensemble members. To achieve this goal, we construct a simple climatic perturbation of present-day climate forcing fields based on two climate proxies, both atmospheric and oceanic. The model is able to reproduce expected grounding line advances during glacials and subsequent retreats during terminations with reasonable glacial-interglacial ice volume changes.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


2014 ◽  
Vol 2 (2) ◽  
pp. 911-933 ◽  
Author(s):  
N. F. Glasser ◽  
S. J. A. Jennings ◽  
M. J. Hambrey ◽  
B. Hubbard

Abstract. Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.


2021 ◽  
pp. M56-2020-7
Author(s):  
Guy J. G. Paxman

AbstractThe development of a robust understanding of the response of the Antarctic Ice Sheet to present and projected future climatic change is a matter of key global societal importance. Numerical ice sheet models that simulate future ice sheet behaviour are typically evaluated with recourse to how well they reproduce past ice sheet behaviour, which is constrained by the geological record. However, subglacial topography, a key boundary condition in ice sheet models, has evolved significantly throughout Antarctica's glacial history. Since mantle processes play a fundamental role in the generation and modification of topography over geological timescales, an understanding of the interactions between the Antarctic mantle and palaeotopography is crucial for developing more accurate simulations of past ice sheet dynamics. This chapter provides a review of the influence of the Antarctic mantle on the long-term evolution of the subglacial landscape, through processes including structural inheritance, flexural isostatic adjustment, lithospheric cooling and thermal subsidence, volcanism and dynamic topography. The uncertainties associated with reconstructing these processes through time are discussed, as are important directions for future research and the implications of the evolving subglacial topography for the response of the Antarctic Ice Sheet to climatic and oceanographic change.


1998 ◽  
Vol 27 ◽  
pp. 161-168 ◽  
Author(s):  
Roland C. Warner ◽  
W.Κ. Budd

The primary effects of global warming on the Antarctic ice sheet can involve increases in surface melt for limited areas at lower elevations, increases in net accumulation, and increased basal melting under floating ice. For moderate global wanning, resulting in ocean temperature increases of a few °C, the large- increase in basal melting can become the dominant factor in the long-term response of the ice sheet. The results from ice-sheet modelling show that the increased basal melt rates lead to a reduction of the ice shelves, increased strain rates and flow at the grounding lines, then thinning and floating of the marine ice sheets, with consequential further basal melting. The mass loss from basal melting is counteracted to some extent by the increased accumulation, but in the long term the area of ice cover decreases, particularly in West Antarctica, and the mass loss can dominate. The ice-sheet ice-shelf model of Budd and others (1994) with 20 km resolution has been modified and used to carry out a number of sensitivity studies of the long-term response of the ice sheet to prescribed amounts of global warming. The changes in the ice sheet are computed out to near-equilibrium, but most of the changes take place with in the first lew thousand years. For a global mean temperature increase of 3°C with an ice-shelf basal melt rate of 5 m a−1 the ice shelves disappear with in the first few hundred years, and the marine-based parts of the ice sheet thin and retreat. By 2000 years the West Antarctic region is reduced to a number of small, isolated ice caps based on the bedrock regions which are near or above sea level. This allows the warmer surface ocean water to circulate through the archipelago in summer, causing a large change to the local climate of the region.


1990 ◽  
Vol 14 ◽  
pp. 329
Author(s):  
Vitaly Barbash

A nonstationary mathematical model of thermics and dynamics of the Antarctic ice sheet has been developed, taking into consideration the influence of long-term changes of climate. The influence of climatic variations during the last 100 000 years on the temperature field within the ice sheet has been analysed. Information about climatic changes is based on paleographic data and isotope analyses of ice samples from bore holes at Vostok and Byrd stations. The input data used include results from field surveys of accumulation, temperatures of upper surface, relief of the base and thickness of the ice sheet along the flowlines in the western and eastern parts of the ice sheet, as well as experimental data on ice rheology. The computations show that traces of the climatic minimum that took place about 18 000 years ago are found in the temperature field of the Antarctic ice sheet. The model developed has proved that warming of climate due to the “greenhouse effect” leads to significant changes in the thermal regime in the upper parts of the ice sheet, but will not lead to conditions threatening bottom layers.


2018 ◽  
Vol 12 (1) ◽  
pp. 49-70 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.


1998 ◽  
Vol 27 ◽  
pp. 201-206 ◽  
Author(s):  
R. Calov ◽  
A. Savvin ◽  
R. Greve ◽  
I. Hansen ◽  
K. Hutter

The three-dimensional polythermal ice-sheet model SICOPOLIS is applied to the entire Antarctic ice sheet in support of the European Project for Ice Coring in Antartica (EPICA). in this study, we focus on the deep ice core to be drilled in Dronning Maud Land (Atlantic sector of East Antarctica) as part of EPICA. It has not yel been decided where the exact drill-site will be situated. Our objective is to support EPICA during its planning phase as well as during the actual drilling process. We discuss a transient simulation with a climate forcing derived from the Vostok ice core and the SPECMAP sea-level record. This simulation shows the range of accumulation, basal temperature, age and shear deformation to be expected in the region of Dronning Maud Land. Based on these results, a possible coring position is proposed, and the distribution of temperature, age, horizontal velocity and shear deformation is shown for this column.


1990 ◽  
Vol 14 ◽  
pp. 329-329
Author(s):  
Vitaly Barbash

A nonstationary mathematical model of thermics and dynamics of the Antarctic ice sheet has been developed, taking into consideration the influence of long-term changes of climate.The influence of climatic variations during the last 100 000 years on the temperature field within the ice sheet has been analysed. Information about climatic changes is based on paleographic data and isotope analyses of ice samples from bore holes at Vostok and Byrd stations.The input data used include results from field surveys of accumulation, temperatures of upper surface, relief of the base and thickness of the ice sheet along the flowlines in the western and eastern parts of the ice sheet, as well as experimental data on ice rheology.The computations show that traces of the climatic minimum that took place about 18 000 years ago are found in the temperature field of the Antarctic ice sheet.The model developed has proved that warming of climate due to the “greenhouse effect” leads to significant changes in the thermal regime in the upper parts of the ice sheet, but will not lead to conditions threatening bottom layers.


Sign in / Sign up

Export Citation Format

Share Document