scholarly journals Importance of radiative transfer processes in urban climate models: a study based on the PALM 6.0 model system

2022 ◽  
Vol 15 (1) ◽  
pp. 145-171
Author(s):  
Mohamed H. Salim ◽  
Sebastian Schubert ◽  
Jaroslav Resler ◽  
Pavel Krč ◽  
Björn Maronga ◽  
...  

Abstract. Including radiative transfer processes within the urban canopy layer into microscale urban climate models (UCMs) is essential to obtain realistic model results. These processes include the interaction of buildings and vegetation with shortwave and longwave radiation, thermal emission, and radiation reflections. They contribute differently to the radiation budget of urban surfaces. Each process requires different computational resources and physical data for the urban elements. This study investigates how much detail modellers should include to parameterize radiative transfer in microscale building-resolving UCMs. To that end, we introduce a stepwise parameterization method to the Parallelized Large-eddy Simulation Model (PALM) system 6.0 to quantify individually the effects of the main radiative transfer processes on the radiation budget and on the flow field. We quantify numerical simulations of both simple and realistic urban configurations to identify the major and the minor effects of radiative transfer processes on the radiation budget. The study shows that processes such as surface and vegetation interaction with shortwave and longwave radiation will have major effects, while a process such as multiple reflections will have minor effects. The study also shows that radiative transfer processes within the canopy layer implicitly affect the incoming radiation since the radiative transfer model is coupled to the radiation model. The flow field changes considerably in response to the radiative transfer processes included in the model. The study identified those processes which are essentially needed to assure acceptable quality of the flow field. These processes are receiving radiation from atmosphere based on the sky-view factors, interaction of urban vegetation with radiation, radiative transfer among urban surfaces, and considering at least single reflection of radiation. Omitting any of these processes may lead to high uncertainties in the model results.

2020 ◽  
Author(s):  
Mohamed H. Salim ◽  
Sebastian Schubert ◽  
Jaroslav Resler ◽  
Pavel Krč ◽  
Björn Maronga ◽  
...  

Abstract. Including radiative transfer processes within the urban canopy layer into microscale urban climate models (UCMs) is essential to obtain realistic model results. These processes include the interaction of buildings and vegetation with shortwave and longwave radiation, thermal emission, and radiation reflections. They contribute differently to the radiation budget of urban surfaces. Each process requires different computational resources and physical data for the urban elements. This study investigates how much detail modellers should include to parameterise radiative transfer in microscale building resolving UCMs. To that end, we introduce a stepwise parameterization method to the the PALM model system 6.0 to quantify individually the effects of the main radiative transfer processes on the radiation budget and on the flow field. We quantify numerical simulations of both simple and realistic urban configurations to identify the radiative transfer processes which have major effects on the radiation budget, such as surface and vegetation interaction with short wave and long wave radiation, and those which have minor effects, such as multiple reflections. The study also shows that radiative transfer processes within the canopy layer implicitly affect the incoming radiation since the radiative transfer model is coupled to the radiation model. The flow field changes considerably in response to the radiative transfer processes included in the model. The study highlights those processes which are essentially needed to assure acceptable quality of the flow field. Omitting any of these processes may lead to high uncertainties in the model results.


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2018 ◽  
Vol 57 (3) ◽  
pp. 493-515 ◽  
Author(s):  
S. K. Mukkavilli ◽  
A. A. Prasad ◽  
R. A. Taylor ◽  
A. Troccoli ◽  
M. J. Kay

AbstractDirect normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.


2017 ◽  
Vol 17 (22) ◽  
pp. 13559-13572 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (US) has increased by 0.58–1.0 Wm−2 a−1 over the 2000–2014 time frame, simultaneously with reductions in US aerosol optical depth (AOD) of 3.3–5.0  ×  10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing US aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000–2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear-sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 Wm−2 a−1 at Goodwin Creek, MS, and +0.93 Wm−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central US. The 1990–2015 trends in the NLDAS SWdn over the central US are also of a similar magnitude to our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central US are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the US, where improvements in air quality due to reductions in the aerosol burden could inadvertently pose an enhanced climate risk.


2010 ◽  
Vol 10 (5) ◽  
pp. 13373-13405 ◽  
Author(s):  
B. Mayer ◽  
S. W. Hoch ◽  
C. D. Whiteman

Abstract. The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.


2019 ◽  
Vol 32 (23) ◽  
pp. 8111-8125 ◽  
Author(s):  
Lukas Kluft ◽  
Sally Dacie ◽  
Stefan A. Buehler ◽  
Hauke Schmidt ◽  
Bjorn Stevens

Abstract We revisit clear-sky one-dimensional radiative–convective equilibrium (1D-RCE) and determine its equilibrium climate sensitivity to a CO2 doubling (ECS) and associated uncertainty. Our 1D-RCE model, named konrad, uses the Rapid Radiative Transfer Model for GCMs (RRTMG) to calculate radiative fluxes in the same way as in comprehensive climate models. The simulated radiative feedbacks are verified by a line-by-line radiative transfer model, with which we also investigate their spectral distribution. Changing the model configuration of konrad enables a clear separation between the water vapor and the lapse rate feedbacks, as well as the interaction between the two. We find that the radiative feedback and ECS are sensitive to the chosen relative humidity profile, resulting in an ECS range of 2.09–2.40 K. Using larger CO2 forcings we find that the radiative feedback changes up to 10% for surface temperatures of 291–299 K. Although the ECS is similar to previous studies, it arises from the compensation of a larger clear-sky forcing (4.7 W m−2) and more strongly negative feedbacks (−2.3 W m−2 K−1). The lapse rate feedback and the feedback from the interaction of lapse rate and humidity compensate each other, but the degree of compensation depends on the relative humidity profile. Additionally, the temperature profile is investigated in a warming climate. The temperature change at the convective top is half as large as at the surface, consistent with the proportionally higher anvil temperature hypothesis, as long as the humidity is consistently coupled to the temperature profile.


2017 ◽  
Vol 18 (2) ◽  
pp. 555-572 ◽  
Author(s):  
K. N. Musselman ◽  
J. W. Pomeroy

AbstractA measurement and modeling campaign evaluated variations in tree temperatures with solar exposure at the edge of a forest clearing and how the resulting longwave radiation contributed to spatial patterns of snowmelt energy surrounding an individual tree. Compared to measurements, both a one-dimensional (1D) energy-balance model and a two-dimensional (2D) radial trunk heat transfer model that simulated trunk surface temperatures and thermal inertia performed well (RMSE and biases better than 1.7° and ±0.4°C). The 2D model that resolved a thin bark layer better simulated daytime temperature spikes. Measurements and models agreed that trunk surfaces returned to ambient air temperature values near sunset. Canopy needle temperatures modeled with a 1D energy-balance approach were within the range of measurements. The radiative transfer model simulated substantial tree-contributed snow surface longwave irradiance to a distance of approximately one-half the tree height, with higher values on the sun-exposed sides of the tree. Trunks had very localized and substantially lower longwave energy influence on snowmelt compared to that of the canopy. The temperature and radiative transfer models provide the spatially detailed information needed to develop scaling relationships for estimating net radiation for snowmelt in sparse and discontinuous forest canopies.


Sign in / Sign up

Export Citation Format

Share Document