scholarly journals The Interactions between Soil-Biosphere-Atmosphere (ISBA) land surface model Multi-Energy Balance (MEB) option in SURFEX – Part 1: Model description

2016 ◽  
Author(s):  
Aaron Boone ◽  
Patrick Samuelsson ◽  
Stefan Gollvik ◽  
Adrien Napoly ◽  
Lionel Jarlan ◽  
...  

Abstract. Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data-sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the Interactions between the Surface Biosphere Atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The Force-Restore approach in ISBA has been replaced in recent years by improved realism with respect to for example, multi-layer explicit physically-based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It become clear that the conceptual limits of the composite soil-vegetation scheme within ISBA have been reached and there is a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the High-Resolution Limited Area Model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA Multi-Energy Budget (MEB) in order to address these issues. ISBA-MEB consists in a fully-implicit numerical coupling between a multi-layer physically-based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature which permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts: in part one, the ISBA-MEB model equations, numerical schemes and theoretical background are presented. In part two which is a separate companion paper, a local scale evaluation of the new scheme is presented along with a detailed description of the new forest litter scheme.

2017 ◽  
Vol 10 (2) ◽  
pp. 843-872 ◽  
Author(s):  
Aaron Boone ◽  
Patrick Samuelsson ◽  
Stefan Gollvik ◽  
Adrien Napoly ◽  
Lionel Jarlan ◽  
...  

Abstract. Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the interactions between the soil–biosphere–atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The force–restore approach in ISBA has been replaced in recent years by multi-layer explicit physically based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It became clear that the conceptual limits of the composite soil–vegetation scheme within ISBA had been reached and there was a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the high-resolution limited area model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA multi-energy balance (MEB) in order to address these issues. ISBA-MEB consists in a fully implicit numerical coupling between a multi-layer physically based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature that permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts; in part one, the ISBA-MEB model equations, numerical schemes, and theoretical background are presented. In part two (Napoly et al., 2016), which is a separate companion paper, a local scale evaluation of the new scheme is presented along with a detailed description of the new forest litter scheme.


2020 ◽  
Author(s):  
Eugene Muzylev ◽  
Zoya Startseva ◽  
Elena Volkova ◽  
Eugene Vasilenko

<p>The water availability of agricultural arid regions can be assessed at presence using the physical-mathematical model of water and heat exchange between land surface and atmosphere LSM (Land Surface Model) adapted to satellite-derived estimates of meteorological and vegetation characteristics. The LSM is designed to calculate soil water content W, evapotranspiration Ev, vertical heat fluxes and other water and heat regime elements. Soil and vegetation characteristics were used in the LSM as parameters and meteorological characteristics were utilized as input variables.</p><p>The case study was carried out for the territory of the Saratov and Volgograd Trans-Volga region (the left-bank part of the Saratov and Volgograd regions) of 66600 km<sup>2</sup> for the vegetation seasons 2016-2018.</p><p>The satellite measurement data from radiometers AVHRR/NOAA, SEVIRI/Meteosat-10, -11, -8, and MSU-MR/Meteor-M No. 2 in visible and IR ranges were thematic processed to built estimates of vegetation index NDVI, emissivity E, vegetation cover fraction B, leaf index LAI, land surface temperature LST and precipitation.</p><p>LAI and B estimates were obtained using empirical dependencies on NDVI. The adequacy of the LAI and B estimates obtained from all sensor data was verified when comparing the LAI time behavior built for named vegetation seasons. Errors of determining B and LAI were 15 and 20%, respectively.</p><p>Satellite-derived estimates of daily, decadal and monthly precipitation sums for each pixel were obtained using the Multi Threshold Method (MTM) for detecting clouds, identifying its types allocating precipitation zones and determining their maximum intensity. The MTM is based on the developed algorithm of the transition from the assessment of precipitation intensity to the assessment of their daily amounts. Testing of the method was carried out when comparing these amounts with observed at meteorological stations. The probability of satellite-detected precipitation zones corresponded to the actual ones was ~ 80% for all radiometers.</p><p>Based on the MTM, computational algorithm to evaluate the LST was developed and verified on the study region data. Comparison of ground-measured and satellite-derived LST showed that the latter estimates for the overwhelming number of observation turned out to be comparable in accuracy with each other and with the ground-based data.</p><p>Calculations of water and heat regime elements (being the final products of the simulation) were carried out when replacing ground-based estimates of precipitation, LST, LAI and B in the LSM by satellite-derived ones at each time step in all nodes of the computational grid. The efficiency of such replacement procedures was confirmed by comparing measured and calculated values of W and Ev (the difference between them didn’t exceed 15% for W and 25% for Ev).</p><p>The possibility of using soil surface moisture estimates obtained from all-weather measurements by the scatterometer ASCAT/MetOp in the microwave range when simulating soil water content was also revealed. These estimates may use to set initial conditions for the vertical soil water transfer equation, as well as for calculating evaporation from the soil surface and the subsequent formation of the upper boundary condition for this equation.</p><p>As a summary, the described approach can be considered as a method for assessing the water availability for agricultural arid region.</p>


2014 ◽  
Vol 15 (2) ◽  
pp. 631-649 ◽  
Author(s):  
Claire Magand ◽  
Agnès Ducharne ◽  
Nicolas Le Moine ◽  
Simon Gascoin

Abstract The Durance watershed (14 000 km2), located in the French Alps, generates 10% of French hydropower and provides drinking water to 3 million people. The Catchment land surface model (CLSM), a distributed land surface model (LSM) with a multilayer, physically based snow model, has been applied in the upstream part of this watershed, where snowfall accounts for 50% of the precipitation. The CLSM subdivides the upper Durance watershed, where elevations range from 800 to 4000 m within 3580 km2, into elementary catchments with an average area of 500 km2. The authors first show the difference between the dynamics of the accumulation and ablation of the snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) images and snow-depth measurements. The extent of snow cover increases faster during accumulation than during ablation because melting occurs at preferential locations. This difference corresponds to the presence of a hysteresis in the snow-cover depletion curve of these catchments, and the CLSM was adapted by implementing such a hysteresis in the snow-cover depletion curve of the model. Different simulations were performed to assess the influence of the parameterizations on the water budget and the evolution of the extent of the snow cover. Using six gauging stations, the authors demonstrate that introducing a hysteresis in the snow-cover depletion curve improves melting dynamics. They conclude that their adaptation of the CLSM contributes to a better representation of snowpack dynamics in an LSM that enables mountainous catchments to be modeled for impact studies such as those of climate change.


2021 ◽  
Author(s):  
John Edwards

<p>The parametrization of land-atmosphere interactions in numerical weather prediction and climate models is a topic of active and growing interest, especially in connection with extreme events such as heat waves and droughts. Semiarid regions are sensitive to drought and are currently expanding, but they are often poorly represented in numerical models. On forecasting timescales, comparisons of simulated land surface temperature against retrievals from satellites often show significant cold biases around noon, whilst, on climate timescales, land surface models often fail to represent droughts realistically. Inadequate treatment of the land surface, and particularly of soil properties and soil moisture, is likely to contribute to such errors.</p> <p>Efforts to develop improved parametrizations of soil processes in the JULES land surface model for application in weather prediction and climate simulations are underway. Whilst processes at the soil surface are a central part of this, to obtain acceptable performance it is also important to consider the surface flux budget as a whole, including the treatment of the plant canopy. Here, we shall describe the current status of developments aimed at improving the representation of evapotranspiration and ground heat fluxes in the model, noting the major issues encountered. The importance of accurately representing the impact of soil moisture on thermal properties will be stressed. Results from initial studies will be presented and we shall offer a perspective on future developments.<br /><br /></p>


2017 ◽  
Vol 10 (4) ◽  
pp. 1621-1644 ◽  
Author(s):  
Adrien Napoly ◽  
Aaron Boone ◽  
Patrick Samuelsson ◽  
Stefan Gollvik ◽  
Eric Martin ◽  
...  

Abstract. Land surface models (LSMs) need to balance a complicated trade-off between computational cost and complexity in order to adequately represent the exchanges of energy, water and matter with the atmosphere and the ocean. Some current generation LSMs use a simplified or composite canopy approach that generates recurrent errors in simulated soil temperature and turbulent fluxes. In response to these issues, a new version of the interactions between soil–biosphere–atmosphere (ISBA) land surface model has recently been developed that explicitly solves the transfer of energy and water from the upper canopy and the forest floor, which is characterized as a litter layer. The multi-energy balance (MEB) version of ISBA is first evaluated for three well-instrumented contrasting local-scale sites, and sensitivity tests are performed to explore the behavior of new model parameters. Second, ISBA-MEB is benchmarked against observations from 42 forested sites from the global micro-meteorological network (FLUXNET) for multiple annual cycles.It is shown that ISBA-MEB outperforms the composite version of ISBA in improving the representation of soil temperature, ground, sensible and, to a lesser extent, latent heat fluxes. Both versions of ISBA give comparable results in terms of simulated latent heat flux because of the similar formulations of the water uptake and the stomatal resistance. However, MEB produces a better agreement with the observations of sensible heat flux than the previous version of ISBA for 87.5 % of the simulated years across the 42 forested FLUXNET sites. Most of this improvement arises owing to the improved simulation of the ground conduction flux, which is greatly improved using MEB, especially owing to the forest litter parameterization. It is also shown that certain processes are also modeled more realistically (such as the partitioning of evapotranspiration into transpiration and ground evaporation), even if certain statistical performances are neutral. The analyses demonstrate that the shading effect of the vegetation, the explicit treatment of turbulent transfer for the canopy and ground, and the insulating thermal and hydrological effects of the forest floor litter turn out to be essential for simulating the exchange of energy, water and matter across a large range of forest types and climates.


Sign in / Sign up

Export Citation Format

Share Document