scholarly journals Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe

Author(s):  
Vasileios Pavlidis ◽  
Eleni Katragkou ◽  
Andreas Prein ◽  
Aristeidis K. Georgoulias ◽  
Stergios Kartsios ◽  
...  

Abstract. In this work we present a sensitivity study of eight WRF (Weather Research and Forecasting model) regional climate simulations for the EURO-CORDEX domain regarding aerosol implementation and their impact on European climate. The sensitivities differ in the aerosol properties (optical characteristics) and effects implemented (direct/indirect), as well as in the aerosol input data used (Tegen, MACv1, MACC, GOCART). Simulations have a resolution of 0.44° and are forced by the ERA-Interim reanalysis. A basic evaluation has been performed against ground (E-OBS) and satellite-based observational data (CMSAF Sarah, Clara). Implementation of the direct radiative effect of aerosol reduces the direct component of the incoming surface solar radiation by 20–30 % in all seasons, due to enhanced aerosol scattering. The diffuse shortwave component augments 30–40 % in summer and 5–8 % in winter, while downward shortwave radiation at the surface is attenuated by 3–8 %. The resulting aerosol radiative effect is negative and stronger in summer (−12 W/m2) than inwinter (−2 W/m2) due to a balance between the more negative direct aerosol effect (−17 to −5 W/m2) and positive changes in the cloud forcing (+5 W/m2) representing the semi-direct effect. We also show that modeling direct and indirect effects can lead to small changes in cloudiness, mainly regarding low-level clouds, and circulation anomalies in the lower and mid-troposphere, which in some cases can be statistically significant. Precipitation is not affected in a consistent pattern by the aerosol implementation and changes do not exceed ±10 %. Temperature, on the other hand, systematically decreases by −0.1 to −0.5 °C due to the direct effect with regional changes that can be up to −1.5 °C.

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Fangzhou Li ◽  
Wenshi Lin ◽  
Baolin Jiang ◽  
Jiangnan Li

With rapid economic development and urbanization, the air pollution problem over China has drawn great attention. To explore the aerosol direct effect (ADE) over China, two simulations were conducted using WRF-Chem V3.5.1 in the summer of 2015. One was a control run (CTL) including aerosol effect and related physical and chemical processes, and the other one was a sensitivity simulation (SEN), the same as CTL except that aerosol-radiation interactions were turned off. The differences between two tests were analyzed, in particular over regions in South China (SC) and East China (EC). Results showed the following. (1) The large-scale circulation showed a strong El Niño signal, associated with cooling and wet anomalies over EC, while warming and dry anomalies over EC. (2) Due to ADE, there was a significant decrease in precipitation and an increase in AOD over SC and EC, albeit with different mechanisms. (3) In SC, ADE cooled the region reinforcing the El Niño impact and suppressing water vapor fluxes, which led to a more stable atmosphere and weakened water cycle. In EC, ADE caused vertical circulation anomalies opposing the El Niño impact. (4) ADE showed obvious land-sea difference in precipitation and shortwave radiation.


2020 ◽  
Vol 13 (6) ◽  
pp. 2511-2532
Author(s):  
Vasileios Pavlidis ◽  
Eleni Katragkou ◽  
Andreas Prein ◽  
Aristeidis K. Georgoulias ◽  
Stergios Kartsios ◽  
...  

Abstract. In this work we present downscaling experiments with the Weather Research and Forecasting model (WRF) to test the sensitivity to resolving aerosol–radiation and aerosol–cloud interactions on simulated regional climate for the EURO-CORDEX domain. The sensitivities mainly focus on the aerosol–radiation interactions (direct and semi-direct effects) with four different aerosol optical depth datasets (Tegen, MAC-v1, MACC, GOCART) being used and changes to the aerosol absorptivity (single scattering albedo) being examined. Moreover, part of the sensitivities also investigates aerosol–cloud interactions (indirect effect). Simulations have a resolution of 0.44∘ and are forced by the ERA-Interim reanalysis. A basic evaluation is performed in the context of seasonal-mean comparisons to ground-based (E-OBS) and satellite-based (CM SAF SARAH, CLARA) benchmark observational datasets. The impact of aerosols is calculated by comparing it against a simulation that has no aerosol effects. The implementation of aerosol–radiation interactions reduces the direct component of the incoming surface solar radiation by 20 %–30 % in all seasons, due to enhanced aerosol scattering and absorption. Moreover the aerosol–radiation interactions increase the diffuse component of surface solar radiation in both summer (30 %–40 %) and winter (5 %–8 %), whereas the overall downward solar radiation at the surface is attenuated by 3 %–8 %. The resulting aerosol radiative effect is negative and is comprised of the net effect from the combination of the highly negative direct aerosol effect (−17 to −5 W m−2) and the small positive changes in the cloud radiative effect (+5 W m−2), attributed to the semi-direct effect. The aerosol radiative effect is also stronger in summer (−12 W m−2) than in winter (−2 W m−2). We also show that modelling aerosol–radiation and aerosol–cloud interactions can lead to small changes in cloudiness, mainly regarding low-level clouds, and circulation anomalies in the lower and mid-troposphere, which in some cases, mainly close to the Black Sea in autumn, can be of statistical significance. Precipitation is not affected in a consistent pattern throughout the year by the aerosol implementation, and changes do not exceed ±5 % except for the case of unrealistically absorbing aerosol. Temperature, on the other hand, systematically decreases by −0.1 to −0.5 ∘C due to aerosol–radiation interactions with regional changes that can be up to −1.5 ∘C.


2021 ◽  
Vol 14 (3) ◽  
pp. 1533-1551
Author(s):  
Sonia Jerez ◽  
Laura Palacios-Peña ◽  
Claudia Gutiérrez ◽  
Pedro Jiménez-Guerrero ◽  
Jose María López-Romero ◽  
...  

Abstract. The amount of solar radiation reaching the Earth's surface can be highly determined by atmospheric aerosols, which have been pointed to as the most uncertain climate forcing agents through their direct (scattering and absorption), semi-direct (absorption implying a thermodynamic effect on clouds) and indirect (modification of cloud properties when aerosols act as cloud condensation nuclei) effects. Nonetheless, regional climate models hardly ever dynamically model the atmospheric concentration of aerosols and their interactions with radiation (ARIs) and clouds (ACIs). The objective of this work is to evince the role of modeling ARIs and ACIs in Weather Research and Forecast (WRF) model simulations with fully interactive aerosols (online resolved concentrations) with a focus on summer mean surface downward solar radiation (RSDS) over Europe. Under historical conditions (1991–2010), both ARIs and ACIs reduce RSDS by a few percentage points over central and northern regions. This reduction is larger when only ARIs are resolved, while ACIs counteract the effect of the former by up to half. The response of RSDS to the activation of ARIs and ACIs is mainly led by the aerosol effect on cloud coverage, while the aerosol effect on atmospheric optical depth plays a very minor role, which evinces the importance of semi-direct and indirect aerosol effects. In fact, differences in RSDS among experiments with and without aerosols are smaller under clear-sky conditions. In terms of future projections (2031–2050 vs. 1991–2010), the baseline pattern (from an experiment without aerosols) shows positive signals southward and negative signals northward. While ARIs enhance the former and reduce the latter, ACIs work in the opposite direction and provide a flatter RSDS change pattern, further evincing the opposite impact from semi-direct and indirect effects and the nontrivial influence of the latter.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2021 ◽  
Author(s):  
Marjanne Zander ◽  
Pety Viguurs ◽  
Frederiek Sperna Weiland ◽  
Albrecht Weerts

&lt;p&gt;Flash Floods are damaging natural hazards which often occur in the European Alps. Precipitation patterns and intensity may change in a future climate affecting their occurrence and magnitude. For impact studies, flash floods can be difficult to simulate due the complex orography and limited extent &amp; duration of the heavy rainfall events which trigger them. The new generation convection-permitting regional climate models improve the intensity and frequency of heavy precipitation (Ban et al., 2021).&lt;/p&gt;&lt;p&gt;Therefore, this study combines such simulations with high-resolution distributed hydrological modelling to assess changes in flash flood frequency and occurrence over the Alpine terrain. We use the state-of-the-art Unified Model (Berthou et al., 2018) to drive a high-resolution distributed hydrological wflow_sbm model (e.g. Imhoff et al., 2020) covering most of the Alpine mountain range on an hourly resolution. Simulations of the future climate RCP 8.5 for the end-of-century (2096-2105) and current climate (1998-2007) are compared.&lt;/p&gt;&lt;p&gt;First, the wflow_sbm model was validated by comparing ERA5 driven simulation with streamflow observations (across Rhone, Rhine, Po, Adige and Danube). Second, the wflow_sbm simulation driven by UM simulation of the current climate was compared to a dataset of historical flood occurrences (Paprotny et al., 2018, Earth Syst. Sci. Data) to validate if the model can accurately simulate the location of the flash floods and to determine a suitable threshold for flash flooding. Finally, the future run was used to asses changes in flash flood frequency and occurrence. Results show an increase in flash flood frequency for the Upper Rhine and Adige catchments. For the Rhone the increase was less pronounced. The locations where the flash floods occur did not change much.&lt;/p&gt;&lt;p&gt;This research is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to support climate adaptation and mitigation decisions for the coming decades by developing a regional climate prediction and projection system based on high-resolution climate models for Europe.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;N. Ban, E. Brisson, C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, &amp;#8230;, M.J. Zander (2021): &amp;#8220;The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, Part I: Evaluation of precipitation&amp;#8221;, manuscript accepted for publication in Climate Dynamics.&lt;/p&gt;&lt;p&gt;S. Berthou, E.J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Sch&amp;#228;r, and G. Fosser, 2018, &amp;#8220;Pan-european climate at convection-permitting scale: a model intercomparison study.&amp;#8221; Climate Dynamics, pages 1&amp;#8211;25, DOI: 10.1007/s00382-018-4114-6&lt;/p&gt;&lt;p&gt;Imhoff, R.O., W. van Verseveld, B. van Osnabrugge, A.H. Weerts, 2020. &amp;#8220;Scaling point-scale pedotransfer functions parameter estimates for seamless large-domain high-resolution distributed hydrological modelling: An example for the Rhine river.&amp;#8221; Water Resources Research, 56. Doi: 10.1029/2019WR026807&lt;/p&gt;&lt;p&gt;Paprotny, D., Morales Napoles, O., &amp; Jonkman, S. N., 2018. &quot;HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870&quot;. Earth System Science Data, 10, 565&amp;#8211;581, https://doi.org/10.5194/essd-10-565-2018&lt;/p&gt;


2019 ◽  
Vol 2 ◽  
pp. 23-29
Author(s):  
Youssef El Hadri ◽  
Valeriy Khokhlov ◽  
Mariia Slizhe ◽  
Kateryna Sernytska ◽  
Kateryna Stepanova

Morocco's energy system is highly dependent on external energy markets. According to the Ministry Energy, Mines and Sustainable Development today more than 93 % of energy resources are imported to Morocco. In 2008 the Moroccan Government has developed a National Energy Strategy, and one of its priority areas is to increase the share of renewable technologies in the country's energy sector. Morocco is rich in solar energy resources. Studies on the assessment of the Morocco’s solar energy potential indicate, among other benefits, low additional costs when using solar installations compared to losses associated with the solution of future climate problems and lack of resources. The plan envisages the commissioning of solar power plants in Ouarzazate, Ain Ben Mathar, Boujdour, Tarfaya and Laayoune by 2020. The aim of this research is determination of the characteristics of the distribution of Surface Downwelling Shortwave Radiation in the area of the solar power Boujdour, Tarfaya and Laayoune, located in the Laayoune − Sakia El Hamra region in 2021−2050. The data from regional climate modeling with high spatial resolution of the CORDEX-Africa project are used in this research. The RCM modeling is carried out for the region of Africa, in a rectangular coordinate system with a spatial resolution of ~ 44 km. Then, from the modeling data, values are highlighted for the territory of Laayoune − Sakia El Hamra region. Model calculation is performed taking into account the greenhouse gas concentration trajectory of RCP 4.5 calculated using 11 regional climate models. As a result of the simulation for the period 2021−2050, average monthly values of the Surface Downwelling Shortwave Radiation "RSDS" (W/m2) are derived, on the basis of which the mean values for the period of time are calculated. For more detailed information, average monthly total cloud cover values "TC" (%) for the period under study are calculated. Analysis of the change in RSDS in 2021–2050 relative to the recent climatic period is shown that in the Laayoune − Sakia El Hamra region we can expect an increase or retention of its values. The annual run of the RSDS has one maximum in June and one minimum in December. In the future, the distribution of RSDS in the Laayoune − Sakia El Hamra region will have a significant impact on proximity to the Atlantic Ocean, where an increased amount of total cloud cover significantly reduces the amount of incoming radiation. In the location of solar power plants in the near future, the current RSDS values are expected to be maintained, which creates favorable conditions for the further development of the renewable energy industry in this area and increasing its productivity.


2011 ◽  
Vol 11 (11) ◽  
pp. 31401-31432
Author(s):  
Y. Gu ◽  
K. N. Liou ◽  
J. H. Jiang ◽  
H. Su ◽  
X. Liu

Abstract. The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA) generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced for an ice water path (IWP) larger than 20 g m−2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation appears to be associated with enhanced ice water content in this region. The 200 mb radiative heating rate shows more cooling with the aerosol first indirect effect since greater cooling is produced at the cloud top with smaller ice crystal size. The 500 mb omega indicates stronger upward motion, which, together with the increased cooling effect, results in the increased ice water content. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of the aerosol indirect effect using a GCM in connection with A-train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily employed for application to other GCMs.


2021 ◽  
Author(s):  
Blanka Bartok

&lt;p&gt;As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.&lt;/p&gt;&lt;p&gt;The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).&lt;/p&gt;&lt;p&gt;Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.&lt;/p&gt;&lt;p&gt;The study also includes a case study determining the changes in solar power generation induced by the extreme situations.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document