aerosol direct effect
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Fangzhou Li ◽  
Wenshi Lin ◽  
Baolin Jiang ◽  
Jiangnan Li

With rapid economic development and urbanization, the air pollution problem over China has drawn great attention. To explore the aerosol direct effect (ADE) over China, two simulations were conducted using WRF-Chem V3.5.1 in the summer of 2015. One was a control run (CTL) including aerosol effect and related physical and chemical processes, and the other one was a sensitivity simulation (SEN), the same as CTL except that aerosol-radiation interactions were turned off. The differences between two tests were analyzed, in particular over regions in South China (SC) and East China (EC). Results showed the following. (1) The large-scale circulation showed a strong El Niño signal, associated with cooling and wet anomalies over EC, while warming and dry anomalies over EC. (2) Due to ADE, there was a significant decrease in precipitation and an increase in AOD over SC and EC, albeit with different mechanisms. (3) In SC, ADE cooled the region reinforcing the El Niño impact and suppressing water vapor fluxes, which led to a more stable atmosphere and weakened water cycle. In EC, ADE caused vertical circulation anomalies opposing the El Niño impact. (4) ADE showed obvious land-sea difference in precipitation and shortwave radiation.


2019 ◽  
Vol 19 (3) ◽  
pp. 1505-1520 ◽  
Author(s):  
Sophie L. Haslett ◽  
Jonathan W. Taylor ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
...  

Abstract. Water in the atmosphere can exist in the solid, liquid or gas phase. At high humidities, if the aerosol population remains constant, more water vapour will condense onto the particles and cause them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) at λ=525 nm for 63 relative humidity profiles. The median AOD in the region from these calculations was 0.36, the same as that measured by sun photometers at the ground site. The spread in the calculated AODs was less than the spread from the sun photometer measurements. In both cases, values above 0.5 were seen predominantly in the mornings and corresponded with high humidities. Observations of modest variations in aerosol load and composition are unable to explain the high and variable AODs observed using sun photometers, which can only be recreated by accounting for the very elevated and variable relative humidities (RHs) in the boundary layer. Most importantly, the highest AODs present in the mornings are not possible without the presence of high RH in excess of 95 %. Humid layers are found to have the most significant impact on AOD when they reach RH greater than 98 %, which can result in a wet AOD more than 1.8 times the dry AOD. Unsaturated humid layers were found to reach these high levels of RH in 37 % of observed cases. It can therefore be concluded that the high AODs present across the region are driven by the high humidities and are then moderated by changes in aerosol abundance. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.


2018 ◽  
Author(s):  
Sophie L. Haslett ◽  
Jonathan W. Taylor ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
...  

Abstract. Water in the atmosphere exists as both vapour and liquid water contained in particles. At high humidities, more water vapour condenses onto particles and causes them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) for 63 relative humidity profiles. A static aerosol profile was assumed. Therefore, these results show the extent of the AOD frequency distribution that can be explained by humidity alone, rather than predicting actual AOD values. The median AOD in the region from these calculations was 0.46, which compares to a median of 0.36 measured by sun photometers. The shape of the AOD frequency distribution was largely comparable to that of the sun photometer measurements, demonstrating that relative humidity is able to account for a large part of the region's AOD variability. Humid layers are found to have the most significant impact on AOD when they reach relative humidities greater than 98 %, which can result in a wet AOD up to seven times larger than the dry AOD. Unsaturated humid layers were found to reach these high levels of relative humidity in 37 % of observed cases. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.


2018 ◽  
Author(s):  
Duoying Ji ◽  
Songsong Fang ◽  
Charles L. Curry ◽  
Hiroki Kashimura ◽  
Shingo Watanabe ◽  
...  

Abstract. We examine extreme temperature and precipitation under two potential geoengineering methods forming part of the Geoengineering Model Intercomparison Project (GeoMIP). The solar dimming experiment G1 is designed to completely offset the global mean radiative forcing due to a CO2-quadrupling experiment (abrupt 4 × CO2), while in GeoMIP experiment G4, the radiative forcing due to the representative concentration pathway 4.5 (RCP4.5) scenario is partly offset by a simulated layer of aerosols in the stratosphere. Both G1 and G4 geoengineering simulations lead to lower maximum temperatures at higher latitudes, and on land primarily through feedback effects involving high latitude processes such as snow cover, sea ice and soil moisture. Maximum 5-day precipitation increases over subtropical oceans, whereas warm spells decrease markedly in the tropics, and the number of consecutive dry days decreases in most deserts. The precipitation during the tropical cyclone (hurricane) seasons becomes less intense, whilst the remainder of the year becomes wetter. Aerosol injection is more effective than dimming in moderating extreme precipitation (and flooding), possibly due to stratospheric warming by aerosol injection working in tandem with sea surface temperature reductions to moderate extreme tropical storm cyclogenesis. The differences in the response of temperature extremes between the two types of geoengineering are relatively minor. Despite the magnitude of the radiative forcing applied in G1 being ~ 6.5 times larger than in G4, and differences in the aerosol chemistry and transport schemes amongst the models, one can discern clear differences in the precipitation extremes between the types of geoengineering probably due to the aerosol direct effect and related energetic changes.


2017 ◽  
Vol 17 (21) ◽  
pp. 13071-13087 ◽  
Author(s):  
Lars Ahlm ◽  
Andy Jones ◽  
Camilla W. Stjern ◽  
Helene Muri ◽  
Ben Kravitz ◽  
...  

Abstract. Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30° N and 30° S are set in each model to generate a global-mean effective radiative forcing (ERF) of −2.0 W m−2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.


2017 ◽  
Author(s):  
Lars Ahlm ◽  
Andy Jones ◽  
Camilla W. Stjern ◽  
Helene Muri ◽  
Ben Kravitz ◽  
...  

Abstract. Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models, or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation mode sea spray aerosol particles over ocean between 30° N and 30° S are set in each model to generate a global-mean effective radiative forcing (ERF) of −2.0 W m−2 at the top of atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.


2016 ◽  
Vol 121 (11) ◽  
pp. 6534-6554 ◽  
Author(s):  
Jing Wang ◽  
Dale J. Allen ◽  
Kenneth E. Pickering ◽  
Zhanqing Li ◽  
Hao He

Sign in / Sign up

Export Citation Format

Share Document