scholarly journals A new open-source visco-elastic Earth deformation module implemented in Elmer (v8.4)

2019 ◽  
Author(s):  
Thomas Zwinger ◽  
Grace A. Nield ◽  
Juha Ruokolainen ◽  
Matt A. King

Abstract. We present a new, open source visco-elastic Earth-deformation model, Elmer/Earth. Using the multi-physics Finite Element package Elmer, a model to compute visco-elastic material deformation has been implemented into the existing linear elasticity solver routine. Unlike approaches often implemented in engineering codes, our solver accounts for the restoring force of buoyancy within a system of layers with depth-varying density. It does this by directly integrating the solution of the system rather than by applying stress-jump conditions in the form of Winkler foundations on inter-layer boundaries, as is usually needed when solving the minimisation problem given by the stress-divergence in commercial codes. We benchmarked the new model with results from a commercial Finite Element engineering package (ABAQUS, v2018) and another open-source code that uses visco-elastic Normal Mode theory, TABOO, using a flat-earth setup loaded by a cylindrical disc of 100 km diameter and 100 m height of ice density. Evaluating the differences of predicted surface deformation at the centre of the load and two distinctive distances (100 km and 200 km), average deviations of 7 cm and 2.7 cm of Elmer/Earth results to ABAQUS and TABOO, respectively, were observed. In view of more than 100 cm maximum vertical deformation and the different numerical methods and parameters, these are very encouraging results. Elmer is set up as a highly scalable parallel code and distributed under the (L)GPL license, meaning that large scale computations can be made without any licensing restrictions. Scaling figures presented in this paper show good parallel performance of the new model. Additionally, the high fidelity ice sheet code Elmer/Ice utilises the same source-base of Elmer and thereby the new model opens the way to undertaking high-resolution coupled ice-flow - Earth deformation simulations, which are required for robust projections of future sea-level rise and glacial isostatic adjustment.

2020 ◽  
Vol 13 (3) ◽  
pp. 1155-1164
Author(s):  
Thomas Zwinger ◽  
Grace A. Nield ◽  
Juha Ruokolainen ◽  
Matt A. King

Abstract. We present a new, open-source viscoelastic solid earth deformation model, Elmer/Earth. Using the multi-physics finite-element package Elmer, a model to compute viscoelastic material deformation has been implemented into the existing linear elasticity solver routine. Unlike approaches often implemented in engineering codes, our solver accounts for the restoring force of buoyancy within a system of layers with depth-varying density. It does this by directly integrating the solution of the system rather than by applying stress-jump conditions in the form of Winkler foundations on inter-layer boundaries, as is usually needed when solving the minimization problem given by the stress divergence in commercial codes. We benchmarked the new model with results from a commercial finite-element engineering package (ABAQUS, v2018) and another open-source code that uses viscoelastic normal mode theory, TABOO, using a flat-earth setup loaded by a cylindrical disc of 100 km in diameter and 100 m in height at the density of ice. Evaluating the differences in predicted surface deformation at the centre of the load and two distinctive distances (100 and 200 km), average deviations of 7 and 2.7 cm of Elmer/Earth results to ABAQUS and TABOO, respectively, were observed. In view of more than 100 cm maximum vertical deformation and the different numerical methods and parameters, these are very encouraging results. Elmer is set up as a highly scalable parallel code and distributed under the (L)GPL license, meaning that large-scale computations can be made without any licensing restrictions. Scaling figures presented in this paper show good parallel performance of the new model. Additionally, the high-fidelity ice-sheet code Elmer/Ice utilizes the same source base as Elmer and thereby the new model opens the way to undertaking high-resolution coupled ice-flow–solid-earth deformation simulations, which are required for robust projections of future sea-level rise and glacial isostatic adjustment.


2020 ◽  
Vol 12 (3) ◽  
pp. 424 ◽  
Author(s):  
Yu Morishita ◽  
Milan Lazecky ◽  
Tim Wright ◽  
Jonathan Weiss ◽  
John Elliott ◽  
...  

For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit.


2020 ◽  
Vol 980 ◽  
pp. 58-69
Author(s):  
Wen Cheng Wang ◽  
Lisong Tang ◽  
Feng Wang

The paper first introduces the concept of inherent strain and the theory and method of predicting welding deformation by the inherent strain finite element method. Studies have shown that the inherent strain exists in the weld and the near seam area, and it is also related to factors such as welding heat input and plate thickness. Through the use of large-scale finite element simulation software ANSYS, the inherent strain finite element prediction method is applied to the welding deformation of the outer gantry assembly material of forklift, which provides effective reference data for future welding work of forklift gantry materials.


2013 ◽  
Vol 378 ◽  
pp. 639-643
Author(s):  
Qiang Pei ◽  
Shuang Wu

Artificial boundaries are developed by means of theory of elastic wave motion. The related theory of visco-elastic artificial boundary and expressions of parameters are introduced. And the stability of the visco-elastic artificial boundary is verified combining with numerical example of plane problem by using large-scale finite element software. The results show that the boundary can simulate the energy radiation effect of semi-infinite foundation and elastic restoring force at the same time. In addition, the programming of the boundary in finite element software is easy to implement, the calculation results using the boundary are stable and the boundary has a broad application in engineering.


SLEEP ◽  
2020 ◽  
Author(s):  
Luca Menghini ◽  
Nicola Cellini ◽  
Aimee Goldstone ◽  
Fiona C Baker ◽  
Massimiliano de Zambotti

Abstract Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical settings.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


Sign in / Sign up

Export Citation Format

Share Document