scholarly journals The impacts of uncertainties in emissions on aerosol data assimilation and short-term PM<sub>2.5</sub> predictions in CMAQ v5.2.1 over East Asia

2020 ◽  
Author(s):  
Sojin Lee ◽  
Chul Han Song ◽  
Kyung Man Han ◽  
Daven K. Henze ◽  
Kyunghwa Lee ◽  
...  

Abstract. For the purpose of improving PM prediction skills in East Asia, we estimated a new background error covariance matrix (BEC) for aerosol data assimilation using surface PM2.5 observations that accounts for the uncertainties in anthropogenic emissions. In contrast to the conventional method to estimate the BEC that uses perturbations in meteorological data, this method additionally considered the perturbations using two different emission inventories. The impacts of the new BEC were then tested for the prediction of surface PM2.5 over East Asia using Community Multi-scale Air Quality (CMAQ) initialized by three-dimensional variational method (3D-VAR). The surface PM2.5 data measured at 154 sites in South Korea and 1,535 sites in China were assimilated every six hours during the Korea-United States Air Quality Study (KORUS-AQ) campaign period (1 May–14 June 2016). Data assimilation with our new BEC showed better agreement with the surface PM2.5 observations than that with the conventional method. Our method also showed closer agreement with the observations in 24-hour PM2.5 predictions with ~ 44 % fewer negative biases than the conventional method. We conclude that increased standard deviations, together with horizontal and vertical length scales in the new BEC, tend to improve the data assimilation and short-term predictions for the surface PM2.5. This paper also suggests further research efforts devoted to estimating the BEC to improve PM2.5 predictions.

2015 ◽  
Vol 143 (8) ◽  
pp. 3087-3108 ◽  
Author(s):  
Aaron Johnson ◽  
Xuguang Wang ◽  
Jacob R. Carley ◽  
Louis J. Wicker ◽  
Christopher Karstens

Abstract A GSI-based data assimilation (DA) system, including three-dimensional variational assimilation (3DVar) and ensemble Kalman filter (EnKF), is extended to the multiscale assimilation of both meso- and synoptic-scale observation networks and convective-scale radar reflectivity and velocity observations. EnKF and 3DVar are systematically compared in this multiscale context to better understand the impacts of differences between the DA techniques on the analyses at multiple scales and the subsequent convective-scale precipitation forecasts. Averaged over 10 diverse cases, 8-h precipitation forecasts initialized using GSI-based EnKF are more skillful than those using GSI-based 3DVar, both with and without storm-scale radar DA. The advantage from radar DA persists for ~5 h using EnKF, but only ~1 h using 3DVar. A case study of an upscale growing MCS is also examined. The better EnKF-initialized forecast is attributed to more accurate analyses of both the mesoscale environment and the storm-scale features. The mesoscale location and structure of a warm front is more accurately analyzed using EnKF than 3DVar. Furthermore, storms in the EnKF multiscale analysis are maintained during the subsequent forecast period. However, storms in the 3DVar multiscale analysis are not maintained and generate excessive cold pools. Therefore, while the EnKF forecast with radar DA remains better than the forecast without radar DA throughout the forecast period, the 3DVar forecast quality is degraded by radar DA after the first hour. Diagnostics revealed that the inferior analysis at mesoscales and storm scales for the 3DVar is primarily attributed to the lack of flow dependence and cross-variable correlation, respectively, in the 3DVar static background error covariance.


2019 ◽  
Vol 36 (8) ◽  
pp. 1563-1575 ◽  
Author(s):  
Sung-Min Kim ◽  
Hyun Mee Kim

AbstractIn this study, the observation impacts on 24-h forecast error reduction (FER), based on the adjoint method in the four-dimensional variational (4DVAR) data assimilation (DA) and hybrid-4DVAR DA systems coupled with the Unified Model, were evaluated from 0000 UTC 5 August to 1800 UTC 26 August 2014. The nonlinear FER in hybrid-4DVAR was 12.2% greater than that in 4DVAR due to the use of flow-dependent background error covariance (BEC), which was a weighted combination of the static BEC and the ensemble BEC based on ensemble forecasts. In hybrid-4DVAR, the observation impacts (i.e., the approximated nonlinear FER) for most observation types increase compared to those in 4DVAR. The increased observation impact from using hybrid-4DVAR instead of 4DVAR changes depending on the analysis time and regions. To calculate the ensemble BEC in hybrid-4DVAR, analyses at 0600 and 1800 UTC (0000 and 1200 UTC) used 3-h (9-h) ensemble forecasts. Greater observation impact was obtained when 3-h ensemble forecasts were used for the ensemble BEC at 0600 and 1800 UTC, than with 9-h ensemble forecasts at 0000 and 1200 UTC. Different from other observations, the atmospheric motion vectors (AMVs) deduced from geostationary satellite are more frequently observed in the same area. When the ensemble forecasts with longer integration times were used for the ensemble BEC in hybrid-4DVAR, the observation impact of the AMVs decreased the most in East Asia. This implies that the observation impact of AMVs in East Asia shows the highest sensitivity to the integration time of the ensemble members used for deducing the flow-dependent BEC in hybrid-4DVAR.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hongze Leng ◽  
Junqiang Song ◽  
Fengshun Lu ◽  
Xiaoqun Cao

This study considers a new hybrid three-dimensional variational (3D-Var) and ensemble Kalman filter (EnKF) data assimilation (DA) method in a non-perfect-model framework, named space-expanded ensemble localization Kalman filter (SELKF). In this method, the localization operation is directly applied to the ensemble anomalies with a Schur Product, rather than to the full error covariance of the state in the EnKF. Meanwhile, the correction space of analysis increment is expanded to a space with larger dimension, and the rank of the forecast error covariance is significantly increased. This scheme can reduce the spurious correlations in the covariance and approximate the full-rank background error covariance well. Furthermore, a deterministic scheme is used to generate the analysis anomalies. The results show that the SELKF outperforms the perturbed EnKF given a relatively small ensemble size, especially when the length scale is relatively long or the observation error covariance is relatively small.


2014 ◽  
Vol 142 (5) ◽  
pp. 1852-1873 ◽  
Author(s):  
Eric Wattrelot ◽  
Olivier Caumont ◽  
Jean-François Mahfouf

AbstractThis paper presents results from radar reflectivity data assimilation experiments with the nonhydrostatic limited-area model Application of Research to Operations at Mesoscale (AROME) in an operational context. A one-dimensional (1D) Bayesian retrieval of relative humidity profiles followed by a three-dimensional variational data assimilation (3D-Var) technique is adopted. Several preprocessing procedures of raw reflectivity data are presented and the use of the nonrainy signal in the assimilation is widely discussed and illustrated. This two-step methodology allows the authors to build up a screening procedure that takes into account the evaluation of the results from the 1D Bayesian retrieval. In particular, the 1D retrieval is checked by comparing a pseudoanalyzed reflectivity to the observed reflectivity. Additionally, a physical consistency between the reflectivity innovations and the 1D relative humidity increments is imposed before assimilating relative humidity pseudo-observations with other observations. This allows the authors to counteract the difficulty of the current 3D-Var system to correct strong differences between model and observed clouds from the crude specification of background-error covariances. Assimilation experiments of radar reflectivity data in a preoperational configuration are first performed over a 1-month period. Positive impacts on short-term precipitation forecast scores are systematically found. The evaluation shows improvements on the analysis and also on objective conventional forecast scores, in particular for the model wind field up to 12 h. A case study for a specific precipitating system demonstrates the capacity of the method for improving significantly short-term forecasts of organized convection.


2013 ◽  
Vol 141 (8) ◽  
pp. 2721-2739 ◽  
Author(s):  
Chengsi Liu ◽  
Qingnong Xiao

Abstract A four-dimensional ensemble-based variational data assimilation (4DEnVar) algorithm proposed in Part I of the 4DEnVar series (denoted En4DVar in Part I, but here we refer to it as 4DEnVar according to WMO conference recommendation to differentiate it from En4DVar algorithm using adjoint model) uses a flow-dependent background error covariance calculated from ensemble forecasts and performs 4DVar optimization based on an incremental approach and a preconditioning algorithm. In Part II, the authors evaluated 4DEnVar with observing system simulation experiments (OSSEs) using the Advanced Research Weather Research and Forecasting Model (ARW-WRF, hereafter WRF). The current study extends the 4DEnVar to assimilate real observations for a cyclone in the Antarctic and the Southern Ocean in October 2007. The authors performed an intercomparison of four different WRF variational approaches for the case, including three-dimensional variational data assimilation (3DVar), first guess at the appropriate time (FGAT), and ensemble-based three-dimensional (En3DVar) and four-dimensional (4DEnVar) variational data assimilations. It is found that all data assimilation approaches produce positive impacts in this case. Applying the flow-dependent background error covariance in En3DVar and 4DEnVar yields forecast skills superior to those with the homogeneous and isotropic background error covariance in 3DVar and FGAT. In addition, the authors carried out FGAT and 4DEnVar 3-day cycling and 72-h forecasts. The results show that 4DEnVar produces a better performance in the cyclone prediction. The inflation factor on 4DEnVar can effectively improve the 4DEnVar analysis. The authors also conducted a short period (10-day lifetime of the cyclone in the domain) of analysis/forecast intercomparison experiments using 4DEnVar, FGAT, and 3DVar. The 4DEnVar scheme demonstrates overall superior and robust performance.


Author(s):  
Y. Hu ◽  
M. Zhang ◽  
Y. Liang ◽  
L. Ye ◽  
D. Zhao ◽  
...  

<p><strong>Abstract.</strong> Background error covariance (BEC) plays a key role in a variational data assimilation system. It determines variable analysis increments by spreading information from observation points. In order to test the influence of BEC on the GSI data assimilation and prediction of aerosol in Beijing-Tianjin-Hebei, a regional BEC is calculated using one month series of numerical forecast fields of November 2017 based on the National Meteorological Center (NMC) method, and compared with the global BEC.The results show that the standard deviation of stream function of the regional BEC is larger than that of the global BEC. And the horizontal length-scale of the regional BEC is smaller than that of the global BEC, white the vertical length-scale of the regional BEC is similar with that of the global BEC. The increments of the assimilation experiment with the regional BEC present more small scale information than that with the global BEC. The forecast skill of the experiment with the regional BEC is higher than that with the global BEC in the stations of Beijing, Tianjin, Chengde and Taiyuan, and the average root-mean-square errors (RMSE) reduces by over 13.4%.</p>


2016 ◽  
Vol 9 (8) ◽  
pp. 2623-2638 ◽  
Author(s):  
Zengliang Zang ◽  
Zilong Hao ◽  
Yi Li ◽  
Xiaobin Pan ◽  
Wei You ◽  
...  

Abstract. Balance constraints are important for background error covariance (BEC) in data assimilation to spread information between different variables and produce balance analysis fields. Using statistical regression, we develop a balance constraint for the BEC of aerosol variables and apply it to a three-dimensional variational data assimilation system in the WRF/Chem model; 1-month forecasts from the WRF/Chem model are employed for BEC statistics. The cross-correlations between the different species are generally high. The largest correlation occurs between elemental carbon and organic carbon with as large as 0.9. After using the balance constraints, the correlations between the unbalanced variables reduce to less than 0.2. A set of data assimilation and forecasting experiments is performed. In these experiments, surface PM2.5 concentrations and speciated concentrations along aircraft flight tracks are assimilated. The analysis increments with the balance constraints show spatial distributions more complex than those without the balance constraints, which is a consequence of the spreading of observation information across variables due to the balance constraints. The forecast skills with the balance constraints show substantial and durable improvements from the 2nd hour to the 16th hour compared with the forecast skills without the balance constraints. The results suggest that the developed balance constraints are important for the aerosol assimilation and forecasting.


2017 ◽  
Vol 145 (10) ◽  
pp. 4205-4225 ◽  
Author(s):  
Ming Hu ◽  
Stanley G. Benjamin ◽  
Therese T. Ladwig ◽  
David C. Dowell ◽  
Stephen S. Weygandt ◽  
...  

The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensional hybrid ensemble–variational assimilation option to the RAP high-resolution, hourly cycling system and shows the skill improvements of 1–12-h forecasts of upper-air wind, moisture, and temperature over the purely three-dimensional variational analysis system. Use of perturbation data from an independent global ensemble, the Global Data Assimilation System (GDAS), is demonstrated to be very effective for the regional RAP hybrid assimilation. In this paper, application of the GSI-hybrid assimilation for the RAP is explained. Results from sensitivity experiments are shown to define configurations for the operational RAP version 2, the ratio of static and ensemble background error covariance, and vertical and horizontal localization scales for the operational RAP version 3. Finally, a 1-week RAP experiment from a summer period was performed using a global ensemble from a winter period, suggesting that a significant component of its multivariate covariance structure from the ensemble is independent of time matching between analysis time and ensemble valid time.


2013 ◽  
Vol 6 (1) ◽  
pp. 1-16 ◽  
Author(s):  
J. D. Silver ◽  
J. Brandt ◽  
M. Hvidberg ◽  
J. Frydendall ◽  
J. H. Christensen

Abstract. Data assimilation is the process of combining real-world observations with a modelled geophysical field. The increasing abundance of satellite retrievals of atmospheric trace gases makes chemical data assimilation an increasingly viable method for deriving more accurate analysed fields and initial conditions for air quality forecasts. We implemented a three-dimensional optimal interpolation (OI) scheme to assimilate retrievals of NO2 tropospheric columns from the Ozone Monitoring Instrument into the Danish Eulerian Hemispheric Model (DEHM, version V2009.0), a three-dimensional, regional-scale, offline chemistry-transport model. The background error covariance matrix, B, was estimated based on differences in the NO2 concentration field between paired simulations using different meteorological inputs. Background error correlations were modelled as non-separable, horizontally homogeneous and isotropic. Parameters were estimated for each month and for each hour to allow for seasonal and diurnal patterns in NO2 concentrations. Three experiments were run to compare the effects of observation thinning and the choice of observation errors. Model performance was assessed by comparing the analysed fields to an independent set of observations: ground-based measurements from European air-quality monitoring stations. The analysed NO2 and O3 concentrations were more accurate than those from a reference simulation without assimilation, with increased temporal correlation for both species. Thinning of satellite data and the use of constant observation errors yielded a better balance between the observed increments and the prescribed error covariances, with no appreciable degradation in the surface concentrations due to the observation thinning. Forecasts were also considered and these showed rather limited influence from the initial conditions once the effects of the diurnal cycle are accounted for. The simple OI scheme was effective and computationally feasible in this context, where only a single species was assimilated, adjusting the three-dimensional field for this compound. Limitations of the assimilation scheme are discussed.


2016 ◽  
Vol 73 (12) ◽  
pp. 4911-4925 ◽  
Author(s):  
Zhaoxia Pu ◽  
Shixuan Zhang ◽  
Mingjing Tong ◽  
Vijay Tallapragada

Abstract An initial vortex spindown, or strong adjustment to the structure and intensity of a hurricane’s initial vortex, presents a significant problem in hurricane forecasting, as with the NCEP Hurricane Weather Research and Forecasting Model (HWRF), because it can cause significantly degraded intensity forecasts. In this study, the influence of the self-consistent regional ensemble background error covariance on assimilating hurricane inner-core tail Doppler radar (TDR) observations in HWRF is examined with the NCEP gridpoint statistical interpolation (GSI)-based ensemble–three-dimensional variational (3DVAR) hybrid data assimilation system. It is found that the resolution of the background error covariance term, coming from the ensemble forecasts, has notable influence on the assimilation of hurricane inner-core observations and subsequent forecasting results. Specifically, the use of ensemble forecasting at high-resolution native grids results in significant reduction of the vortex spindown problem and thus leads to improved hurricane intensity forecasting. Further diagnoses are conducted to examine the spindown problem with a gradient wind balance. It is found that artificial vortex initialization, performed before data assimilation, can cause strong supergradient winds or imbalance in the vortex inner-core region. Assimilation of hurricane inner-core TDR data can significantly mitigate this imbalance by reducing the supergradient effects. Compared with the use of a global ensemble background error term, application of the self-consistent regional ensemble background covariance to inner-core data assimilation leads to better representation of the mesoscale hurricane inner-core structures. It can also result in more realistic vortex structures in data assimilation even when the observational data are unevenly distributed.


Sign in / Sign up

Export Citation Format

Share Document