scholarly journals Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART

2011 ◽  
Vol 4 (4) ◽  
pp. 1077-1102 ◽  
Author(s):  
C. Knote ◽  
D. Brunner ◽  
H. Vogel ◽  
J. Allan ◽  
A. Asmi ◽  
...  

Abstract. The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O3 and NOx are well reproduced. SO2 is found to be overestimated, simulated PM2.5 and PM10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2–5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.

2011 ◽  
Vol 4 (3) ◽  
pp. 1809-1874 ◽  
Author(s):  
C. Knote ◽  
D. Brunner ◽  
H. Vogel ◽  
J. Allan ◽  
A. Asmi ◽  
...  

Abstract. The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. The model is able to represent trace gas concentrations with good accuracy and reproduces bulk aerosol properties rather well though with a clear tendency to underestimate both total mass (PM10 and PM2.5) and aerosol optical depth. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations can be simulated well, size distributions are comparable. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Rita Cesari ◽  
Tony Christian Landi ◽  
Massimo D’Isidoro ◽  
Mihaela Mircea ◽  
Felicita Russo ◽  
...  

This work presents the on-line coupled meteorology–chemistry transport model BOLCHEM, based on the hydrostatic meteorological BOLAM model, the gas chemistry module SAPRC90, and the aerosol dynamic module AERO3. It includes parameterizations to describe natural source emissions, dry and wet removal processes, as well as the transport and dispersion of air pollutants. The equations for different processes are solved on the same grid during the same integration step, by means of a time-split scheme. This paper describes the model and its performance at horizontal resolution of 0.2∘× 0.2∘ over Europe and 0.1∘× 0.1∘ in a nested configuration over Italy, for one year run (December 2009–November 2010). The model has been evaluated against the AIRBASE data of the European Environmental Agency. The basic statistics for higher resolution simulations of O3, NO2 and particulate matter concentrations (PM2.5 and PM10) have been compared with those from Copernicus Atmosphere Monitoring Service (CAMS) ensemble median. In summer, for O3 we found a correlation coefficient R of 0.72 and mean bias of 2.15 over European domain and a correlation coefficient R of 0.67 and mean bias of 2.36 over Italian domain. PM10 and PM2.5 are better reproduced in the winter, the latter with a correlation coefficient R of 0.66 and the mean bias MB of 0.35 over Italian domain.


2013 ◽  
Vol 13 (3) ◽  
pp. 1177-1192 ◽  
Author(s):  
C. Knote ◽  
D. Brunner

Abstract. Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass was increased by 10% on average. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley) while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i.e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system tends to underestimate the total wet deposited mass for the simulated case study.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2893 ◽  
Author(s):  
Willem W. Verstraeten ◽  
Klaas Folkert Boersma ◽  
John Douros ◽  
Jason E. Williams ◽  
Henk Eskes ◽  
...  

Top-down estimates of surface NOX emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO2) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April–September) during 2013. Here we show that the top-down NOX emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NOX emissions from the MACC-III inventory data (R2 = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NOX emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R2 = 0.79). The uncertainty on the derived NO2 lifetimes and NOX emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO2 plume method applied on both LOTOS-EUROS and OMI tropospheric NO2 columns allows to estimate NOX emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NOX emissions with reasonable accuracy.


2012 ◽  
Vol 12 (1) ◽  
pp. 623-689 ◽  
Author(s):  
G. W. Mann ◽  
K. S. Carslaw ◽  
D. A. Ridley ◽  
D. V. Spracklen ◽  
K. J. Pringle ◽  
...  

Abstract. A global modal aerosol microphysics module (GLOMAP-mode) is evaluated and improved by comparing against a sectional version (GLOMAP-bin) and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that various size distribution parameter settings (mode widths and inter-modal separation sizes) resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Surface mass of sulphate, sea-salt, black carbon (BC) and organic carbon (OC) are, on the annual mean, within 25 % in the two schemes in nearly all regions. On the annual mean, surface level concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), surface area density and condensation sink also compare within 25 % in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically higher in the modal scheme, by 25–60 %, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin-mode differences are much less than model-observation differences, although some processes are missing in these runs which may pose a bigger challenge to modal schemes (e.g. boundary layer nucleation, ultra-fine sea-spray). The findings here underline the need for a spectrum of complexity in global models, with size-resolved aerosol properties predicted by modal schemes needing to be continually benchmarked and improved against freely evolving sectional schemes and observations.


2019 ◽  
Vol 202 ◽  
pp. 149-159 ◽  
Author(s):  
Gerson P. Almeida ◽  
Antônio T. Bittencourt ◽  
Marçal S. Evangelista ◽  
Marcelo S. Vieira-Filho ◽  
Adalgiza Fornaro

2007 ◽  
Vol 7 (6) ◽  
pp. 1537-1547 ◽  
Author(s):  
E. Debry ◽  
K. Fahey ◽  
K. Sartelet ◽  
B. Sportisse ◽  
M. Tombette

Abstract. We briefly present in this short paper a new SIze REsolved Aerosol Model (SIREAM) which simulates the evolution of atmospheric aerosol by solving the General Dynamic Equation (GDE). SIREAM segregates the aerosol size distribution into sections and solves the GDE by splitting coagulation and condensation/evaporation-nucleation. A quasi-stationary sectional approach is used to describe the size distribution change due to condensation/evaporation, and a hybrid equilibrium/dynamical mass-transfer method has been developed to lower the computational burden. SIREAM uses the same physical parameterizations as those used in the Modal Aerosol Model, MAM Sartelet et al. (2006). It is hosted in the modeling system Polyphemus Mallet et al., 2007, but can be linked to any other three-dimensional Chemistry-Transport Model.


2006 ◽  
Vol 6 (6) ◽  
pp. 11845-11875 ◽  
Author(s):  
E. Debry ◽  
K. Fahey ◽  
K. Sartelet ◽  
B. Sportisse ◽  
M. Tombette

Abstract. We briefly present in this short paper a new SIze REsolved Aerosol Model (SIREAM) which simulates the evolution of atmospheric aerosol by solving the General Dynamic Equation (GDE). SIREAM segregates the aerosol size distribution into sections and solves the GDE by splitting coagulation and condensation/evaporation. A moving sectional approach is used to describe the size distribution change due to condensation/evaporation and a hybrid method has been developed to lower the computational burden. SIREAM uses the same physical parameterizations as those used in the Modal Aerosol Model, MAM sartelet05development. It is hosted in the modeling system POLYPHEMUS (Mallet et al., 2006) but can be linked to any other three-dimensional Chemistry-Transport Model.


2020 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Nikos Daskalakis ◽  
Angelos Gkouvousis ◽  
Andreas Hilboll ◽  
Twan van Noije ◽  
...  

Abstract. This work documents and evaluates the tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. Compared to the modified CB05 chemical mechanism previously used in the model, the MOGUNTIA includes a detailed representation of the light hydrocarbons (C1-C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics. Another feature implemented in TM5-MP for this work is the use of the Rosenbrock solver in the chemistry code, which can replace the classical Euler Backward Integration method of the model. Global budgets of ozone (O3), carbon monoxide (CO), hydroxyl radicals (OH), nitrogen oxides (NOX) and volatile organic compounds (VOCs) are here analyzed and their mixing ratios are compared with a series of surface, aircraft and satellite observations for the year 2006. Both mechanisms appear to be able to represent satisfactorily observed mixing ratios of important trace gases, with the MOGUNTIA chemistry configuration yielding lower biases compared to measurements in most of the cases. However, the two chemical mechanisms fail to reproduce the observed mixing ratios of light VOCs, indicating insufficient primary emission source strengths, too weak vertical mixing in the boundary layer, and/or a low bias in the secondary contribution of C2-C3 organics via VOC atmospheric oxidation. Relative computational memory and time requirements of the different model configurations are also compared and discussed. Overall, compared to other chemistry schemes in use in global CTMs, the MOGUNTIA scheme simulates a large suite of oxygenated VOCs that are observed in the atmosphere at significant levels and are involved in aerosol formation, expanding, thus, the applications of TM5-MP.


Sign in / Sign up

Export Citation Format

Share Document