scholarly journals The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system

2012 ◽  
Vol 5 (1) ◽  
pp. 129-147 ◽  
Author(s):  
C. Hofmann ◽  
A. Kerkweg ◽  
H. Wernli ◽  
P. Jöckel

Abstract. Three detailed meteorological case studies are conducted with the global and regional atmospheric chemistry model system ECHAM5/MESSy(→COSMO/MESSy)n, shortly named MECO(n). The aim of this article is to assess the general performance of the on-line coupling of the regional model COSMO to the global model ECHAM5. The cases are characterised by intense weather systems in Central Europe: a cold front passage in March 2010, a convective frontal event in July 2007, and the high impact winter storm "Kyrill" in January 2007. Simulations are performed with the new on-line-coupled model system and compared to classical, off-line COSMO hindcast simulations driven by ECMWF analyses. Precipitation observations from rain gauges and ECMWF analysis fields are used as reference, and both qualitative and quantitative measures are used to characterise the quality of the various simulations. It is shown that, not surprisingly, simulations with a shorter lead time generally produce more accurate simulations. Irrespective of lead time, the accuracy of the on-line and off-line COSMO simulations are comparable for the three cases. This result indicates that the new global and regional model system MECO(n) is able to simulate key mid-latitude weather systems, including cyclones, fronts, and convective precipitation, as accurately as present-day state-of-the-art regional weather prediction models in standard off-line configuration. Therefore, MECO(n) will be applied to simulate atmospheric chemistry exploring the model's full capabilities during meteorologically challenging conditions.

2011 ◽  
Vol 4 (3) ◽  
pp. 1533-1567 ◽  
Author(s):  
C. Hofmann ◽  
A. Kerkweg ◽  
H. Wernli ◽  
P. Jöckel

Abstract. Three detailed meteorological case studies are conducted with the global and regional atmospheric chemistry model system ECHAM5/MESSy(→COSMO/MESSy)n, shortly named MECO(n), in order to assess the general performance of the on-line coupling of the regional model COSMO to the global model ECHAM5. The cases are characterised by intense weather systems in Central Europe: an intense cold frontal passage in March 2010, a convective frontal event in July 2007, and the high impact winter storm "Kyrill" in January 2007. Simulations are performed with the new on-line-coupled model system and compared to classical, off-line COSMO hindcast simulations driven by ECMWF analyses. Precipitation observations from rain gauges and ECMWF analysis fields are used as reference, and both qualitative and quantitative measures are used to characterise the quality of the various simulations. It is shown that, not surprisingly, simulations with a shorter lead time generally produce more accurate simulations. Irrespective of lead time, the accuracy of the on-line and off-line COSMO simulations are comparable for the three cases. This result indicates that the new global and regional model system MECO(n) is able to simulate key mid-latitude weather systems, including cyclones, fronts, and convective precipitation, as accurately as present-day state-of-the-art regional weather prediction models in standard off-line configuration. Therefore, MECO(n) will be applied in the near future to simulate atmospheric chemistry exploring the model's full capabilities during meteorologically challenging conditions.


2016 ◽  
Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Christiane Hofmann

Abstract. For the first time a simulation incorporating tropospheric and stratospheric chemistry using the newly developed MECO(n) model system is performed. MECO(n) is short for MESSyfied ECHAM and COSMO model nested n-times. It features an on-line coupling of the COSMO-CLM model, equipped with the Modular Earth Submodel System (MESSy) interface (called COSMO/MESSy), with the global atmospheric chemistry model ECHAM5/MESSy for Atmospheric Chemistry (EMAC). This on-line coupling allows a consistent model chain with respect to chemical and meteorological boundary conditions from the global scale down to the regional kilometre scale. A MECO(2) simulation incorporating one regional instance over Europe with 50 km resolution and a one instance over Germany with 12 km resolution is conducted for the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. The main goal of this evaluation is to ensure, that the chemistry related MESSy submodels and the on-line coupling with respect to the chemistry are correctly implemented. This evaluation is a prerequisite for the further usage of MECO(n) in atmospheric chemistry related studies. Results of EMAC and the two COSMO/MESSy instances are compared with satellite-, ground-based- and aircraft in situ observations, focusing on ozone, carbon monoxide and nitrogen dioxide. Further the methane lifetimes in EMAC and the two COSMO/MESSy instances are analysed in view of the tropospheric oxidation capacity. From this evaluation we conclude that the chemistry related submodels and the on-line coupling with respect to the chemistry are correctly implemented. In comparison with observations both, EMAC and COSMO/MESSy, show strengths and weaknesses. Especially in comparison to aircraft in situ observations COSMO/MESSy shows very promising results. However, the amplitude of the diurnal cycle of ground-level ozone measurements is underestimated. Most of the differences between COSMO/MESSy and EMAC can be attributed to differences in the dynamics of both models, which is subject to further model developments.


2016 ◽  
Vol 9 (10) ◽  
pp. 3545-3567 ◽  
Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Christiane Hofmann

Abstract. For the first time, a simulation incorporating tropospheric and stratospheric chemistry using the newly developed MECO(n) model system is performed. MECO(n) is short for MESSy-fied ECHAM and COSMO models nested n times. It features an online coupling of the COSMO-CLM model, equipped with the Modular Earth Submodel System (MESSy) interface (called COSMO/MESSy), with the global atmospheric chemistry model ECHAM5/MESSy for Atmospheric Chemistry (EMAC). This online coupling allows a consistent model chain with respect to chemical and meteorological boundary conditions from the global scale down to the regional kilometre scale. A MECO(2) simulation incorporating one regional instance over Europe with 50 km resolution and one instance over Germany with 12 km resolution is conducted for the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. The main goal of this evaluation is to ensure that the chemistry-related MESSy submodels and the online coupling with respect to the chemistry are correctly implemented. This evaluation is a prerequisite for the further usage of MECO(n) in atmospheric chemistry-related studies. Results of EMAC and the two COSMO/MESSy instances are compared with satellite, ground-based and aircraft in situ observations, focusing on ozone, carbon monoxide and nitrogen dioxide. Further, the methane lifetimes in EMAC and the two COSMO/MESSy instances are analysed in view of the tropospheric oxidation capacity. From this evaluation, we conclude that the chemistry-related submodels and the online coupling with respect to the chemistry are correctly implemented. In comparison with observations, both EMAC and COSMO/MESSy show strengths and weaknesses. Especially in comparison to aircraft in situ observations, COSMO/MESSy shows very promising results. However, the amplitude of the diurnal cycle of ground-level ozone measurements is underestimated. Most of the differences between COSMO/MESSy and EMAC can be attributed to differences in the dynamics of both models, which are subject to further model developments.


2012 ◽  
Vol 5 (1) ◽  
pp. 87-110 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel

Abstract. The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.


2018 ◽  
Vol 210 ◽  
pp. 04033 ◽  
Author(s):  
David Šaur ◽  
Kateřina Víchová

This article focuses on the forecasting of flash floods using the Algorithm of Storm Prediction as a new tool to predict convective precipitation, severe phenomena and the risk of flash floods. The first part of the article contains information on methods for predicting dangerous severe phenomena. This algorithm uses mainly data from numerical weather prediction models (NWP models), database of historic weather events and relief characteristics describing the influence of orography on the initiation of atmospheric convection. The result section includes verification of predicted algorithm outputs, selected NWP models and warnings of CHMI and ESTOFEX on three events related to the floods that hit the Zlín Region between years of 2015 - 2017. The main result is a report with prediction outputs of the algorithm visualized in maps for the territory of municipalities with extended competence and their regions. The outputs of the algorithm will be used primarily to increase the effectiveness of preventive measures against flash floods not only by the Fire Rescue Service of Czech Republic but also by the flood and crisis management authorities.


2014 ◽  
Vol 142 (5) ◽  
pp. 2028-2042 ◽  
Author(s):  
Caren Marzban ◽  
Scott Sandgathe ◽  
James D. Doyle ◽  
Nicholas C. Lederer

Abstract Numerical weather prediction models have a number of parameters whose values are either estimated from empirical data or theoretical calculations. These values are usually then optimized according to some criterion (e.g., minimizing a cost function) in order to obtain superior prediction. To that end, it is useful to know which parameters have an effect on a given forecast quantity, and which do not. Here the authors demonstrate a variance-based sensitivity analysis involving 11 parameters in the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Several forecast quantities are examined: 24-h accumulated 1) convective precipitation, 2) stable precipitation, 3) total precipitation, and 4) snow. The analysis is based on 36 days of 24-h forecasts between 1 January and 4 July 2009. Regarding convective precipitation, not surprisingly, the most influential parameter is found to be the fraction of available precipitation in the Kain–Fritsch cumulus parameterization fed back to the grid scale. Stable and total precipitation are most affected by a linear factor that multiplies the surface fluxes; and the parameter that most affects accumulated snow is the microphysics slope intercept parameter for snow. Furthermore, all of the interactions between the parameters are found to be either exceedingly small or have too much variability (across days and/or parameter values) to be of primary concern.


2018 ◽  
Vol 33 (1) ◽  
pp. 185-201 ◽  
Author(s):  
Chris J. Short ◽  
Jon Petch

Abstract Convection-permitting numerical weather prediction models are a key tool for forecasting tropical cyclone (TC) intensities, intensity changes, and precipitation. The Met Office has been routinely running a regional (4.4-km grid spacing), explicit convection version of its Unified Model (UM) over the Philippines since August 2014, driven by its operational global model. The principal aim of this study is to assess the performance of this model relative to the driving global model. By evaluating over a year’s worth of operational TC forecasts, it is shown that the Philippines regional model offers clear benefits for TC forecasting compared with the Met Office global model. In particular, it provides much improved predictions for the intensities of strong storms (category 3 and above) and can successfully capture some rapid intensification (RI) events, whereas the global model cannot predict RI at all. The spatial location of rainfall within intense TCs is also more skillfully predicted by the regional model, and the statistical distribution of rain rates is closer to that observed. Although the regional model adds value, notable biases are also identified, highlighting areas for future work to develop and improve the model.


2014 ◽  
Vol 14 (11) ◽  
pp. 16865-16906 ◽  
Author(s):  
L. Hoffmann ◽  
C. M. Hoppe ◽  
R. Müller ◽  
G. S. Dutton ◽  
J. C. Gille ◽  
...  

Abstract. Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their global loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 yr for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 111(96–132) yr for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 112(97–133) yr for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 112(96–135) yr for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.47±0.04 and the CFC-12 lifetime estimate is 112(102–123) yr. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43–67) yr and 102(88–122) yr, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95–129) yr, based on a ten-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.


Author(s):  
Richard Ménard ◽  
Simon Chabrillat ◽  
Alain Robichaud ◽  
Jean de Grandpré ◽  
Martin Charron ◽  
...  

A coupled stratospheric chemistry-meteorology model was developed by combining the Canadian operational weather prediction model Global Environmental Multiscale (GEM) with a comprehensive stratospheric photochemistry model from the Belgian Assimilation System for Chemical ObsErvations (BASCOE). The coupled model was called GEM-BACH for GEM-Belgian Atmospheric CHemistry. The coupling was made across a chemical interface that preserves time splitting while being modular, allowing GEM to run with or without chemistry. An evaluation of the coupling was performed by comparing the coupled model, refreshed by meteorological analyses every 6 hours, against the standard offline chemical transport model (CTM) approach. Results show that the dynamical meteorological consistency between meteorological analysis times far outweighs the error created by the jump resulting from the meteorological analysis increments at regular time intervals, irrespective whether a 3D-Var or 4D-Var meteorological analysis is used. GEM-BACH forecast refreshed by meteorological analyses every 6 hours were compared against independent measurements of temperature, long-lived species, ozone and water vapor. The comparison showed a relatively good agreement throughout the stratosphere except for an upper-level warm temperature bias and an ozone deficit of nearly 15%. Arguments in favor of using the same horizontal resolution for chemistry, meteorology, and meteorological analysis increments are also presented. In particular, the coupled model simulation during an ozone hole event gives better ozone concentrations than a 4D-Var chemical assimilation at a lower resolution.


Sign in / Sign up

Export Citation Format

Share Document