scholarly journals Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

2015 ◽  
Vol 8 (4) ◽  
pp. 1047-1070 ◽  
Author(s):  
S. Banzhaf ◽  
M. Schaap ◽  
R. Kranenburg ◽  
A. M. M. Manders ◽  
A. J. Segers ◽  
...  

Abstract. In this study we present a dynamic model evaluation of chemistry transport model LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by RACMO2 (Regional Atmospheric Climate MOdel). Observations at European rural background sites have been used as a reference for the model evaluation. To ensure the consistency of the used observational data, stringent selection criteria were applied, including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulfur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both the observations and the model show the largest part of the decline in the 1990s, while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000 and 2009. Furthermore, the results confirm former studies showing that the observed trends in sulfate and total nitrate concentrations from 1990 to 2009 are lower than the trends in precursor emissions and precursor concentrations. The model captured well these non-linear responses to the emission changes. Using the LOTOS-EUROS source apportionment module, trends in the formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20–50% more efficient sulfate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses in the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990s used in this study needs to be improved concerning magnitude and spatial distribution.

2014 ◽  
Vol 7 (4) ◽  
pp. 4645-4703 ◽  
Author(s):  
S. Banzhaf ◽  
M. Schaap ◽  
R. Kranenburg ◽  
A. M. M. Manders ◽  
A. J. Segers ◽  
...  

Abstract. In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000–2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20–50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses to the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990's used in this study needs to be improved concerning magnitude and spatial distribution.


2013 ◽  
Vol 13 (6) ◽  
pp. 15783-15827 ◽  
Author(s):  
S. Banzhaf ◽  
M. Schaap ◽  
R. J. Wichink Kruit ◽  
H. A. C. Denier van der Gon ◽  
R. Stern ◽  
...  

Abstract. In this study, the response of secondary inorganic aerosol (SIA) concentrations to changes in precursor emissions during high PM10 episodes over Central Europe in spring 2009 was investigated with the Eulerian Chemistry Transport Model (CTM) REM-Calgrid (RCG). The model performed well in capturing the temporal variation of PM10 and SIA concentrations and was used to analyse the different origin, development and characteristics of the selected high PM10 episodes. SIA concentrations, which attribute to about 50% of the PM10 concentration in north-western Europe, have been studied by means of several emission scenarios varying SO2, NOx and NH3 emissions within a domain covering Germany and within a domain covering Europe. It was confirmed that the response of sulphate, nitrate and ammonium concentrations and deposition fluxes of S and N to SO2, NOx and NH3 emission changes is non-linear. The deviation from linearity was found to be lower for total deposition fluxes of S and N than for SIA concentrations. Furthermore, the study has shown that incorporating explicit cloud chemistry in the model adds non-linear responses to the system and significantly modifies the response of modelled SIA concentrations and S and N deposition fluxes to changes in precursor emissions. The analysis of emission reduction scenarios demonstrates that next to European wide emission reductions additional national NH3 measures in Germany are more effective in reducing SIA concentrations and deposition fluxes than additional national measures on SO2 and NOx.


2013 ◽  
Vol 13 (23) ◽  
pp. 11675-11693 ◽  
Author(s):  
S. Banzhaf ◽  
M. Schaap ◽  
R. J. Wichink Kruit ◽  
H. A. C. Denier van der Gon ◽  
R. Stern ◽  
...  

Abstract. In this study, the response of secondary inorganic aerosol (SIA) concentrations to changes in precursor emissions during high PM10 episodes over central Europe in spring 2009 was investigated with the Eulerian Chemistry Transport Model (CTM) REM-Calgrid (RCG). The model performed well in capturing the temporal variation of PM10 and SIA concentrations and was used to analyse the different origin, development and characteristics of the selected high PM10 episodes. SIA concentrations, which contribute to about 50% of the PM10 concentration in northwestern Europe, have been studied by means of several model runs for different emission scenarios. SO2, NOx and NH3 emissions have been varied within a domain covering Germany and within a domain covering Europe. It was confirmed that the response of sulfate, nitrate and ammonium concentrations and deposition fluxes of S and N to SO2, NOx and NH3 emission changes is non-linear. The deviation from linearity was found to be lower for total deposition fluxes of S and N than for SIA concentrations. Furthermore, the study has shown that incorporating explicit cloud chemistry in the model adds non-linear responses to the system. It significantly modifies the response of modelled SIA concentrations and S and N deposition fluxes to changes in precursor emissions. The analysis of emission reduction scenario runs demonstrates that next to European-wide emission reductions additional national NH3 measures in Germany are more effective in reducing SIA concentrations and deposition fluxes than additional national measures on SO2 and NOx.


2021 ◽  
Author(s):  
Yuqiang Zhang ◽  
Drew Shindell ◽  
Karl Seltzer ◽  
Lu Shen ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. China has seen dramatic emission changes from 2010, especially after the implementation of Clean Air Action in 2013, with significant air quality and human health benefits observed. Air pollutants, such as PM2.5 and surface ozone, as well as their precursors, have long enough lifetime in the troposphere which can be easily transported downwind. So emission changes in China will not only change the regional air quality domestically, but also affect the air quality in downwind regions. In this study, we use a global chemistry transport model to simulate the influence on both domestic and foreign air quality from the emission change from 2010 to 2017 in China. By applying the health impact functions derived from epidemiology studies, we then quantify the changes in air pollution-related (including both PM2.5 and O3) mortality burdens at regional and global scales. The majority of air pollutants in China reach their peak values around 2012 and 2013. Compared with the year 2010, the population-weighted annual PM2.5 in China increases till 2011 (94.1 μg m−3), and then begins to decrease. In 2017, the population-weighted annual PM2.5 decreases by 17.6 %, compared with the values in 2010 (84.7 μg m−3). The estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observation in China during the same periods. The emission changes in China increased the global PM2.5-related mortality burdens from 2010 to 2013, by 27,700 (95 %CI: 23,900–31, 400) deaths yr−1 in 2011, and 13, 300 (11,400–15,100) deaths yr−1 in 2013, among which at least 93 % occurred in China. The sharp emission decreases after 2013 bring significant benefits for reduced avoided premature mortality in 2017, reaching 108, 800 (92,800–124,800) deaths yr−1 globally, among which 92 % happening in China. Different trend as PM2.5, the annual maximum daily 8-hr ozone in China increased, and also the ozone-related premature deaths, ranging from 3,600 (2,700–4,300) deaths yr−1 in 2011 (75 % of global total increased premature deaths), and 8,500 (6,500–9,900) deaths yr−1 in 2017 (143 % of the global total). Downwind regions, such as South Korea, Japan, and U.S. generally see a decreased O3-related mortality burden after 2013 as a combination of increased export of ozone and decreased export of ozone precursors. In general, we conclude that the sharp emission reductions in China after 2013 bring benefits of improved air quality and reduced premature deaths associated with air pollution at global scale. The benefits are dominated by the PM2.5 decreases since the ozone is shown to actually increase with the emission decrease.


2010 ◽  
Vol 10 (5) ◽  
pp. 2491-2506 ◽  
Author(s):  
A. Voulgarakis ◽  
N. H. Savage ◽  
O. Wild ◽  
P. Braesicke ◽  
P. J. Young ◽  
...  

Abstract. We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996–2000. This period was characterised by anomalous meteorological conditions associated with the strong El Niño of 1997–1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996–2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies.


2009 ◽  
Vol 9 (3) ◽  
pp. 14023-14057 ◽  
Author(s):  
A. Voulgarakis ◽  
N. H. Savage ◽  
P. Braesicke ◽  
O. Wild ◽  
G. D. Carver ◽  
...  

Abstract. We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. The strong influence of emissions is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies. The approach followed in the current study can help explain observed tropospheric variability, such as the increases in ozone concentrations over Europe in 1998.


Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2015 ◽  
Vol 15 (2) ◽  
pp. 829-843 ◽  
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment–Fourier transform spectrometer (ACE–FTS). The SSD was negative at altitudes of 20–30 km (−0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


Sign in / Sign up

Export Citation Format

Share Document