scholarly journals Implementing marine organic aerosols into the GEOS-Chem model

2014 ◽  
Vol 7 (5) ◽  
pp. 5965-5992
Author(s):  
B. Gantt ◽  
M. S. Johnson ◽  
M. Crippa ◽  
A. S. H. Prévôt ◽  
N. Meskhidze

Abstract. Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from −79% when using the default settings to −12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of −36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

2015 ◽  
Vol 8 (3) ◽  
pp. 619-629 ◽  
Author(s):  
B. Gantt ◽  
M. S. Johnson ◽  
M. Crippa ◽  
A. S. H. Prévôt ◽  
N. Meskhidze

Abstract. Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from −79% when using the default settings to −12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of −36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.


2012 ◽  
Vol 12 (18) ◽  
pp. 8553-8566 ◽  
Author(s):  
B. Gantt ◽  
M. S. Johnson ◽  
N. Meskhidze ◽  
J. Sciare ◽  
J. Ovadnevaite ◽  
...  

Abstract. In this study, several marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll a concentration ([chl a]) and 10 m wind speed (U10), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl a] does a better job replicating surface observations. Sensitivity simulations in which the negative U10 and positive [chl a] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr−1. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol.


2014 ◽  
Vol 14 (7) ◽  
pp. 3691-3701 ◽  
Author(s):  
E. R. Trump ◽  
N. M Donahue

Abstract. We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility driven secondary organic aerosol (SOA) yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies, are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.


2012 ◽  
Vol 12 (5) ◽  
pp. 12853-12883 ◽  
Author(s):  
B. Gantt ◽  
M. S. Johnson ◽  
N. Meskhidze ◽  
J. Sciare ◽  
J. Ovadnevaite ◽  
...  

Abstract. In this study, five different marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, categorized in two groups based on varying dependences of chlorophyll a concentration ([chl a]) and 10 m wind speed (U10), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl a] does a better job replicating surface observations. Sensitivity simulations of the sea spray-based parameterizations show that improved predictions of the seasonality of the marine POA concentrations can be achieved by varying the U10 and [chl a] dependence of the organic mass fraction of sea spray aerosol. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr−1. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol.


2015 ◽  
Vol 15 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Y. J. Li ◽  
B. P. Lee ◽  
L. Su ◽  
J. C. H. Fung ◽  
C.K. Chan

Abstract. Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m−3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species – semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) – prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local traffic emissions contributed > 10% to organic aerosols in spring and summer but only 6–7% in autumn and winter. The cooking organic aerosol (COA) factor contributed > 10% to organic aerosols in winter. With the aid of highly time-resolved data, diurnal patterns of the degree of oxygenation of organic aerosols were used to determine the sources and formation processes of the least understood organic portion of PM. The oxygen-to-carbon atomic ratio (O : C) and average carbon oxidation state OS C) showed little variation in autumn and winter, when the long-range transport of oxidized organics dominated, whereas they peaked in the afternoon in spring and summer, when locally produced secondary organic aerosol prevailed. Air mass origin, in contrast, had a strong influence on both NR-PM1 concentrations and the fractions of species in NR-PM1. The findings of the current study provide a better understanding of the role of air mass origin in the seasonal characteristics of the PM composition and the relative importance of local vs. transported organic aerosols in this region.


2011 ◽  
Vol 11 (8) ◽  
pp. 21789-21834
Author(s):  
R. H. Moore ◽  
R. Bahreini ◽  
C. A. Brock ◽  
K. D. Froyd ◽  
J. Cozic ◽  
...  

Abstract. We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including relatively pristine Arctic background conditions as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Analysis of the individual mass spectral m/z 43 and 44 peaks from an aerosol mass spectrometer show the organic aerosols sampled to be well-oxygenated, consistent with with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition measurements, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (± 0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.


2018 ◽  
Author(s):  
Liqing Hao ◽  
Olga Garmash ◽  
Mikael Ehn ◽  
Pasi Miettinen ◽  
Paola Massoli ◽  
...  

Abstract. Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols-Effects on Clouds and Climate) campaign was conducted during the spring 2014 at SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase of LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or condensation of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the night time, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase of SVOOA mass correlated well with the calculated increase of condensed HOMs (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the night time.


2012 ◽  
Vol 12 (1) ◽  
pp. 89-101 ◽  
Author(s):  
D. M. Westervelt ◽  
R. H. Moore ◽  
A. Nenes ◽  
P. J. Adams

Abstract. This work estimates the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of sea salt. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr−1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe, assuming direct replacement of sea salt aerosol with organic aerosol. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only ~15% in a biologically active region of the Southern Ocean. To test the sensitivity to uncertainty in the sea spray emissions process, we relax the assumption that sea spray aerosol number and mass remain fixed and instead can add to sea spray emissions rather than replace existing sea salt. In these simulations, we find that marine organic aerosol can increase CCN by up to 50% in the Southern Ocean and 3.7% globally during the austral summer. This vast difference in CCN impact highlights the need for further observational exploration of the sea spray aerosol emission process as well as evaluation and development of model parameterizations.


2020 ◽  
Vol 13 (12) ◽  
pp. 6383-6423
Author(s):  
Jane P. Mulcahy ◽  
Colin Johnson ◽  
Colin G. Jones ◽  
Adam C. Povey ◽  
Catherine E. Scott ◽  
...  

Abstract. We document and evaluate the aerosol schemes as implemented in the physical and Earth system models, the Global Coupled 3.1 configuration of the Hadley Centre Global Environment Model version 3 (HadGEM3-GC3.1) and the United Kingdom Earth System Model (UKESM1), which are contributing to the sixth Coupled Model Intercomparison Project (CMIP6). The simulation of aerosols in the present-day period of the historical ensemble of these models is evaluated against a range of observations. Updates to the aerosol microphysics scheme are documented as well as differences in the aerosol representation between the physical and Earth system configurations. The additional Earth system interactions included in UKESM1 lead to differences in the emissions of natural aerosol sources such as dimethyl sulfide, mineral dust and organic aerosol and subsequent evolution of these species in the model. UKESM1 also includes a stratospheric–tropospheric chemistry scheme which is fully coupled to the aerosol scheme, while GC3.1 employs a simplified aerosol chemistry mechanism driven by prescribed monthly climatologies of the relevant oxidants. Overall, the simulated speciated aerosol mass concentrations compare reasonably well with observations. Both models capture the negative trend in sulfate aerosol concentrations over Europe and the eastern United States of America (US) although the models tend to underestimate sulfate concentrations in both regions. Interactive emissions of biogenic volatile organic compounds in UKESM1 lead to an improved agreement of organic aerosol over the US. Simulated dust burdens are similar in both models despite a 2-fold difference in dust emissions. Aerosol optical depth is biased low in dust source and outflow regions but performs well in other regions compared to a number of satellite and ground-based retrievals of aerosol optical depth. Simulated aerosol number concentrations are generally within a factor of 2 of the observations, with both models tending to overestimate number concentrations over remote ocean regions, apart from at high latitudes, and underestimate over Northern Hemisphere continents. Finally, a new primary marine organic aerosol source is implemented in UKESM1 for the first time. The impact of this new aerosol source is evaluated. Over the pristine Southern Ocean, it is found to improve the seasonal cycle of organic aerosol mass and cloud droplet number concentrations relative to GC3.1 although underestimations in cloud droplet number concentrations remain. This paper provides a useful characterisation of the aerosol climatology in both models and will facilitate understanding in the numerous aerosol–climate interaction studies that will be conducted as part of CMIP6 and beyond.


2011 ◽  
Vol 11 (3) ◽  
pp. 7235-7289 ◽  
Author(s):  
P. Reitz ◽  
C. Spindler ◽  
T. F. Mentel ◽  
L. Poulain ◽  
H. Wex ◽  
...  

Abstract. The ability of coated mineral dust particles to act as cloud condensation nuclei (CCN) and ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on IN and CCN efficiency of the treated dust particles are discussed.


Sign in / Sign up

Export Citation Format

Share Document