scholarly journals Technical note on measuring run-off dynamics from pavements using a new device: the weighable tipping bucket

2011 ◽  
Vol 15 (5) ◽  
pp. 1379-1386 ◽  
Author(s):  
T. Nehls ◽  
Y. Nam Rim ◽  
G. Wessolek

Abstract. Due to climate change, cities need to adapt to changing rainfall and rainwater run-off dynamics. In order to develop an corresponding process based run-off model for pavements, we had to improve the measurement technique to detect run-off dynamics in an appropriate high resolution. Traditional tipping buckets (TB) have a comparable low volume resolution, capable to quantify the highest intensities in a range of expected flows. This results in varying temporal resolutions for varying flow intensities, especially in low resolutions for small flow events. Therefore, their applicability for run-off measurements and other hydrological process studies is limited, especially when the dynamics of both small and big flow events shall be measured. We improved a TB by coupling it to a balance and called it weighable tipping bucket (WTB). This paper introduces the device set up and the according data processing concept. The improved volume and temporal resolution of the WTB are demonstrated. A systematic uncertainty of TB measurements compared to WTB measurements is calculated. The impact of that increased resolution on our understanding of run-off dynamics from paved urban soils are discussed, exemplary for the run-off and the surface storage of a paved urban soil. The study was conducted on a permeably paved lysimeter situated in Berlin, Germany. Referring to the paved surface, the TB has a resolution of 0.1 mm, while the WTB has a resolution of 0.001 mm. The temporal resolution of the WTB is 3 s, the TB detects individual tippings with 0.4 s between them. Therefore, the data processing concept combines both the benefits of the balance to measure small intensities with that of the TB to measure high flow intensities. During a five months period (July to November 2009) 154 rain events were detected. Accordingly, the TB and WTB detected 47 and 121 run-off events. The total run-off was 79.6 mm measured by the WTB which was 11 % higher than detected by the TB. 95 % of that difference can be appointed to water, which evaporated from the TB. To derive a surface storage estimation, we analyzed the WTB and TB data for rain events without run-off. According to WTB data, the surface storage of the permeable pavement is 1.7 mm, while using TB data leads to an overestimation of 47 % due to low volume resolution of the TB. Combining traditional TB with modern, fast, high resolution digital balances offers the opportunity to upgrade existing TB systems in order to improve their volume detection limit and their temporal resolution, which is of great advantage for the synchronization of water balance component measurements and the investigation of hydrological processes. Furthermore, we are able to quantify the uncertainty of flow measurements gained with traditional tipping buckets.

2010 ◽  
Vol 7 (6) ◽  
pp. 9271-9292
Author(s):  
T. Nehls ◽  
Y.-N. Rim ◽  
G. Wessolek

Abstract. Due to climate change, cities need to adapt to changing rainfall and rainwater run-off dynamics. In order to develop an corresponding process based run-off model for pavements, we had to improve the measurement technique to detect run-off dynamics in an appropriate high resolution. Traditional tipping buckets (TB) have a comparable low volume resolution, capable to quantify the highest intensities in a range of expected flows. This results in varying temporal resolutions for varying flow intensities, especially in low resolutions for small flow events. Therefore, their applicability for run-off measurements and other hydrological process studies is limited, especially when the dynamics of both small and big flow events shall be described. We improved a TB by coupling it to a balance and called it weighable tipping bucket (WTB). This paper introduces the device set up and the according data processing concept. The improved volume and temporal resolution of the WTB are demonstrated. A systematic uncertainty of TB measurements compared to WTB measurements is calculated. The impact of that increased resolution on our understanding of run-off dynamics from paved urban soils are discussed, exemplary for the run-off and the surface storage of a paved urban soil. The study was conducted on a permeably paved lysimeter situated in Berlin, Germany. Referring to the paved surface, the TB has a resolution of 0.1 mm, while the WTB has a resolution of 0.001 mm. The temporal resolution of the WTB is 3 s, the TB detects individual tippings with 0.4 s between them. Therefore, the data processing concept combines both the benefits of the balance to measure small intensities with that of the TB to measure high flow intensities. During a five months period (July to November 2009) 154 rain events were detected. Accordingly, the TB and WTB detected 47 and 121 run-off events. The total run-off was 79.6 mm measured by the WTB which was 11% higher than detected by the TB. 95% of that difference can be appointed to water, which evaporated from the TB. To derive a surface storage estimation, we analyzed the WTB and TB data for rain events without run-off. According to WTB data, the surface storage of the permeable pavement is 1.7 mm, while using TB data leads to an overestimation of 47% due to low volume resolution of the TB. Combining traditional TB with modern, fast, high resolution digital balances offers the opportunity to upgrade existing TB systems in order to improve their volume detection limit and their temporal resolution, which is of great advantage for the synchronization of water balance component measurements and the investigation of hydrological processes.


2021 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar ◽  
Peter Knippertz

Abstract. Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high resolution, Global Positioning System-Zenith Total Delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes with ~700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24 h to 6 h). The study focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological Cycle in the Mediterranean eXperiment (HyMeX; 24 September 2012). This event is selected due to its severity (100 mm/12 h), the availability of observations for nudging and validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare simulations performed with the COnsortium for Small scale MOdelling (COSMO) model assimilating GPS, high- and low vertical resolution radiosoundings in model resolutions of 7 km, 2.8 km and 500 m. The results show that the additional GPS and radiosonde observations cannot compensate errors in the model dynamics and physics. In this regard the reference COSMO runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-resolution soundings corrects atmospheric humidity, but even further reduces total precipitation. This case study also demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a low-resolution sounding from Nimes (southern France) while precipitation is taking place induces a 40 % increase in precipitation during the subsequent three hours. This precipitation increase is brought about by the moistening of the 700  hPa level (7.5 g kg−1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type, however the 2.8 km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. In follow-up experiments the Icosahedral Nonhydrostatic Model (ICON) will be investigated for this case study to assert whether its numerical and physics updates, compared to its predecessor COSMO, are able to improve the quality of the simulations.


2021 ◽  
Vol 2 (3) ◽  
pp. 561-580
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar ◽  
Peter Knippertz

Abstract. Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation, and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high resolution, Global Positioning System (GPS)-derived zenith total delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes with ∼ 700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24 to 6 h). The study focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological cycle in the Mediterranean eXperiment (HyMeX; 24 September 2012). This event is selected due to its severity (100 mm/12 h), the availability of observations for nudging and validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare simulations performed with the Consortium for Small-scale Modeling (COSMO) model assimilating GPS, high- and low-vertical-resolution radiosoundings in model resolutions of 7 km, 2.8 km, and 500 m. The results show that the additional GPS and radiosonde observations cannot compensate for errors in the model dynamics and physics. In this regard the reference COSMO runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-resolution soundings corrects atmospheric humidity but even further reduces total precipitation. This case study also demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a low-resolution sounding from Nîmes (southern France) while precipitation is taking place induces a 40 % increase in precipitation during the subsequent 3 h. This precipitation increase is brought about by the moistening of the 700 hPa level (7.5 g kg−1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type; however, the 2.8 km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. Future work will aim at a generalization of these conclusions, investigating further cases of the autumn 2012, and the Icosahedral Nonhydrostatic Model (ICON) will be investigated for this case study to assert whether its updates are able to improve the quality of the simulations.


2021 ◽  
Author(s):  
Marita Boettcher ◽  
Finn Burgemeister ◽  
Karolin S. Ferner ◽  
K. Heinke Schlünzen

<p>Urbanisation modifies the local climate and results in the so-called urban climate. Within the urban boundary layer, the average wind speed is reduced, while gustiness is increased. Buildings induce vertical winds. Heterogeneities in the rain pattern around buildings are the consequence. Human discomfort in street canyons may be one result. In addition, sealed urban surfaces lead to large rainwater run-off, which is a cause for flash floods in urban areas.</p><p>Increased computational power allows high-resolution modelling in urban areas with a horizontal resolution well below 10 m. The consideration of more meteorological processes like cloud and rain microphysics is possible. This allows us to estimate the impact of rain events, especially heavy rain events and flash floods, to urban neighbourhoods. Nevertheless, the domain size with these high-resolution models is restricted and the cloud and rain development passes the domain without full development of rain. To overcome this challenge, high-resolution information about rain events in urban areas are necessary.</p><p>In the area of Hamburg, Germany, measurements of a X-band weather radar at a 100-metre-scale and a vertically pointing micro rain radar are available for several years. These high-resolution measurement data are used to develop a forcing method for the microscale, obstacle resolving transport and stream model MITRAS (Salim et al. 2019). The forcing method samples 2D and 3D information about the rain rate to the model domain. The nudging approach adds the information about the rain rate to the top and the lateral boundaries of the model domain. Model simulations with different synoptic situations evaluate the forcing methodology.</p><p>In this contribution, the forcing method will be presented and results from different test cases in a test area in Hamburg will be shown.</p><p><br>Salim M.H, Schlünzen K.H., Grawe D., Boettcher M., Gierisch A.M.U., Fock B.H. (2018): The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory. Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018.</p>


2020 ◽  
Author(s):  
Paul Hepach ◽  
Jakirullah Nooruddin ◽  
Edoardo Bucchignani ◽  
Martin Sauter ◽  
Irina Engelhardt

<p>Karstified aquifers respond rapidly to hydrological events, such as heavy rain storms or draughts. Our ability to predict the response of the aquifer after such events strongly depends on i) temporal and spatial resolution of the available monitoring data and ii) suitable modelling approaches to assess recharge at the respective level of detail. The study catchment, the Western Aquifer Basin (WAB), is Israel´s most important source for freshwater supply. The recharge area of the WAB has an area of 1,812 km<sup>2</sup>. Recharge is characterized by high spatial variability in topography and a high variability in precipitation and temperature, land use, and vegetation. Precipitation also shows a seasonal variability: while annual precipitation mainly occurs during the winter months accompanied by floods in the otherwise dry wadis (October to March, ca. 90 %), summer periods (April to September) are hot and dry, and precipitation decreases to nearly zero.</p><p>We employ SWAT to simulate the large-scale hydrological water balance (evapotranspiration, recharge, run-off) in the recharge area of the WAB on a daily and monthly temporal resolution. The SWAT model uses a SRTM DEM from NASA, soil maps from FAO, soil properties of the Harmonized World Soil Database, and land use maps from the ESA CCI project covering the time period from 1992 to 2015. These datasets are merged in SWAT into 361 Hydrologic Response Units with unique characteristics in soil, land use, and slope, respectively. The calibration of soil water balance model with SWAT-CUP employs monthly actual evapotranspiration and daily surface runoff data. Run-off was measured in hydrometric stations between 2004 – 2015. Evapotranspiration with a spatial resolution of 500 m x 500 m is obtained from the MODIS satellite mission and covers a period between 2001 and 2013 with individual time steps of 8 days. Calculated long-term groundwater recharge is compared with spring discharge measured during the period 1990 – 2013. Climate projections have been obtained with the RCM COSMO-CLM at resolution of 8km, under the IPCC RCP4.5 scenario, nested into the MENA-CORDEX domain.</p><p>The calibrated water balance model allows for scenario analysis for predicted shifts in climate until 2050 to address the impact of climate change on groundwater recharge. In addition to an increase in temperature, fewer but more extreme rainfall events are to be expected. Furthermore, the effect of future land use changes, such as expansion of farm land or urban areas, on recharge depth are analyzed. Finally, simulated high-resolution recharge provides an updated estimate for the currently developed groundwater flow model of the aquifer system. SWAT provides daily recharge for the equivalent porous medium model of the WAB, simulated by MODFLOW. One of our challenges is the calculation of recharge in the hilly region i) characterized by steep slopes and ii) vadose zones of several 100 meters of thickness. Our investigations are expected to provide information on the impact of shifts in climate and global changes on recharge processes and to illustrate the effect of short-term hydrologic events on water resources in large carbonate aquifers under Mediterranean climate.</p>


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


2021 ◽  
pp. 000276422110216
Author(s):  
Kazimierz M. Slomczynski ◽  
Irina Tomescu-Dubrow ◽  
Ilona Wysmulek

This article proposes a new approach to analyze protest participation measured in surveys of uneven quality. Because single international survey projects cover only a fraction of the world’s nations in specific periods, researchers increasingly turn to ex-post harmonization of different survey data sets not a priori designed as comparable. However, very few scholars systematically examine the impact of the survey data quality on substantive results. We argue that the variation in source data, especially deviations from standards of survey documentation, data processing, and computer files—proposed by methodologists of Total Survey Error, Survey Quality Monitoring, and Fitness for Intended Use—is important for analyzing protest behavior. In particular, we apply the Survey Data Recycling framework to investigate the extent to which indicators of attending demonstrations and signing petitions in 1,184 national survey projects are associated with measures of data quality, controlling for variability in the questionnaire items. We demonstrate that the null hypothesis of no impact of measures of survey quality on indicators of protest participation must be rejected. Measures of survey documentation, data processing, and computer records, taken together, explain over 5% of the intersurvey variance in the proportions of the populations attending demonstrations or signing petitions.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 996
Author(s):  
Athanasios Karagioras ◽  
Konstantinos Kourtidis

The purpose of the present study is to investigate the impact of rain, snow and hail on potential gradient (PG), as observed in a period of ten years in Xanthi, northern Greece. An anticorrelation between PG and rainfall was observed for rain events that lasted several hours. When the precipitation rate was up to 2 mm/h, the decrease in PG was between 200 and 1300 V/m, in most cases being around 500 V/m. An event with rainfall rates up to 11 mm/h produced the largest drop in PG, of 2 kV/m. Shortly after rain, PG appeared to bounce back to somewhat higher values than the ones of fair-weather conditions. A decrease in mean hourly PG was observed, which was around 2–4 kV/m during the hail events which occurred concurrently with rain and from 0 to 3.5 kV/m for hail events with no rain. In the case of no drop, no concurrent drop in temperature was observed, while, for the other cases, it appeared that, for each degree drop in temperature, the drop in hourly mean PG was 1000 V/m; hence, we assume that the intensity of the hail event regulates the drop in PG. The frequency distribution of 1-minute PG exhibits a complex structure during hail events and extend from −18 to 11 kV/m, with most of the values in the negative range. During snow events, 1-minute PG exhibited rapid fluctuations between high positive and high negative values, its frequency distribution extending from −10 to 18 kV/m, with peaks at −10 and 3 kV/m.


Sign in / Sign up

Export Citation Format

Share Document