scholarly journals The Indus basin in the framework of current and future water resources management

2012 ◽  
Vol 16 (4) ◽  
pp. 1063-1083 ◽  
Author(s):  
A. N. Laghari ◽  
D. Vanham ◽  
W. Rauch

Abstract. The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions – and especially groundwater extractions – have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.

2011 ◽  
Vol 8 (2) ◽  
pp. 2263-2288 ◽  
Author(s):  
A. N. Laghari ◽  
D. Vanham ◽  
W. Rauch

Abstract. The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2462
Author(s):  
Tharo Touch ◽  
Chantha Oeurng ◽  
Yanan Jiang ◽  
Ali Mokhtar

An integrated modeling approach analyzing water demand and supply balances under management options in a river basin is essential for the management and adaptive measures of water resources in the future. This study evaluated the impacts of climate change on the hydrological regime by predicting the change in both monthly and seasonal streamflow, and identified water supply and demand relations under supply management options and environmental flow maintenance. To reach a better understanding of the consequences of possible climate change scenarios and adaptive management options on water supply, an integrated modeling approach was conducted by using the soil and water assessment tool (SWAT) and water evaluation and planning model (WEAP). Future scenarios were developed for the future period: 2060s (2051–2070), using an ensemble of three general circulation model (GCM) simulations: GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR, driven by the climate projection for representative concentration pathways (RCPs): 6.0 (medium emission scenario). The results indicated that, firstly, the future streamflow will decrease, resulting in a decline of future water availability. Secondly, water supply under natural flow conditions would support 46,167 ha of irrigation schemes and the water shortages will be more noticeable when environmental flow maintenance was considered. The study concludes that reservoir construction would be necessary for agriculture mitigation and adaptation to climate change. Furthermore, the water resources management options considering both supply and demand management are more effective and useful than supply management only, particularly in dealing with climate change impacts.


Water Policy ◽  
2008 ◽  
Vol 10 (6) ◽  
pp. 549-562 ◽  
Author(s):  
M. Salman ◽  
W. Mualla

The countries of the Middle East are characterized by large temporal and spatial variations in precipitation and with limited surface and groundwater resources. The rapid growth and development in the region have led to mounting pressures on scarce resources to satisfy water demands. The dwindling availability of water to meet development needs has become a significant regional issue, especially as a number of countries are facing serious water deficit. Syria is becoming progressively shorter of water as future demand is coming close to or even surpassing available resources. Syria had a population of 18 million in 2002, and its total renewable water resources (TRWR) is estimated around 16 × 109 m3 per year. In other words, the per capita TRWR is less than the water scarcity index (1,000 m3 per person per year) which will make the country experience chronic stress that will hinder its economic development and entail serious degradation. Unfortunately, if water demand at current prices continues to increase in the same way, Syria will experience an alarming deficit between the available resources and the potential needs in the near future. In Syria, until fairly recently, emphasis has been placed on the supply side of water development. Demand management and improvement of patterns of water use has received less attention. The aim was always to augment the national water budget with new water. The most popular way of achieving this aim was to control surface flows by building new dams and creating multi-purpose reservoirs (there are now around 160 dams in Syria with a total capacity of 14 × 109 m3). Irrigation schemes were also built and agricultural activities were expanded greatly to achieve self-sufficiency in essential food products and food security. However, this is no longer achievable with the limited water resources available; water demand is rapidly increasing and easily mobilizable resources have already been exploited. The objective of this paper is to think of different possible ways to manage water demand in the agricultural sector of Syria. It mainly involves two main management options: taxation as a centralized option and water markets as a decentralized one. While water demand management refers to improving both productive and allocative efficiency of water use, this paper focuses on two allocative measures (taxation and water markets) and does not thoroughly cover productive measures such as rehabilitation and upgrading of irrigation schemes or improving operation. However, the paper does not attempt to settle the question for or against each option but tries to find some elements to determine under which conditions the option can lead to expected outcomes taking into account the history of management and the local conditions in Syria: political, social and economical. The paper also looks at other alternatives such as cooperative action and lifting subsidies and argues their possible association to the main management options that may help in reducing the difficulties of implementation.


2010 ◽  
Vol 7 (2) ◽  
pp. 1883-1912 ◽  
Author(s):  
D. R. Archer ◽  
N. Forsythe ◽  
H. J. Fowler ◽  
S. M. Shah

Abstract. Pakistan is highly dependent on water resources originating in the mountain sources of the upper Indus for irrigated agriculture which is the mainstay of its economy. Hence any change in available resources through climate change or socio-economic factors could have a serious impact on food security and the environment. In terms of both ratio of withdrawals to runoff and per-capita water availability, Pakistan's water resources are already highly stressed and will become increasingly so with projected population changes. Potential changes to supply through declining reservoir storage, the impact of waterlogging and salinity or over-abstraction of groundwater, or reallocations for environmental remediation of the Indus Delta or to meet domestic demands, will reduce water availability for irrigation. The impact of climate change on resources in the Upper Indus is considered in terms of three hydrological regimes – a nival regime dependent on melting of winter snow, a glacial regime, and a rainfall regime dependent on concurrent rainfall. On the basis of historic trends in climate, most notably the decline in summer temperatures, there is no strong evidence in favour of marked reductions in water resources from any of the three regimes. Evidence for changes in trans-Himalayan glacier mass balance is mixed. Sustainability of water resources appears more threatened by socio-economic changes than by climatic trends. Nevertheless, analysis and the understanding of the linkage of climate, glaciology and runoff is still far from complete; recent past climate experience may not provide a reliable guide to the future.


2010 ◽  
Vol 14 (8) ◽  
pp. 1669-1680 ◽  
Author(s):  
D. R. Archer ◽  
N. Forsythe ◽  
H. J. Fowler ◽  
S. M. Shah

Abstract. Pakistan is highly dependent on water resources originating in the mountain sources of the upper Indus for irrigated agriculture which is the mainstay of its economy. Hence any change in available resources through climate change or socio-economic factors could have a serious impact on food security and the environment. In terms of both ratio of withdrawals to runoff and per-capita water availability, Pakistan's water resources are already highly stressed and will become increasingly so with projected population changes. Potential changes to supply through declining reservoir storage, the impact of waterlogging and salinity or over-abstraction of groundwater, or reallocations for environmental remediation of the Indus Delta or to meet domestic demands, will reduce water availability for irrigation. The impact of climate change on resources in the Upper Indus is considered in terms of three hydrological regimes – a nival regime dependent on melting of winter snow, a glacial regime, and a rainfall regime dependent on concurrent rainfall. On the basis of historic trends in climate, most notably the decline in summer temperatures, there is no strong evidence in favour of marked reductions in water resources from any of the three regimes. Evidence for changes in trans-Himalayan glacier mass balance is mixed. Sustainability of water resources appears more threatened by socio-economic changes than by climatic trends. Nevertheless, analysis and the understanding of the linkage of climate, glaciology and runoff is still far from complete; recent past climate experience may not provide a reliable guide to the future.


2021 ◽  
Author(s):  
Wouter J. Smolenaars ◽  
Sanita Dhaubanjar ◽  
Muhammad K. Jamil ◽  
Arthur Lutz ◽  
Walter Immerzeel ◽  
...  

Abstract. The densely populated plains of the lower Indus basin largely depend on water resources originating in the mountains of the upper Indus basin. Although recent studies have improved our understanding of this upstream-downstream linkage and the impact of climate change, water use in the mountainous part of the Indus has been largely ignored. This study quantifies the comparative impact of upper Indus water usage on downstream water availability under future climate change and socio-economic development. Future water consumption and relative pressure on water resources vary greatly between upper Indus sub-basins and seasons. During the dry season, the share of surface water required within the upper Indus is high and increasing, and in some sub-basins future water requirements exceed availability during the critical winter months. In the lower Indus this causes spatiotemporal hotspots to emerge where seasonal water availability is reduced by over 25 % compared to natural conditions. This plays an important, but previously not accounted for, compounding role in the steep decline of per capita seasonal water availability in the lower Indus in the future due to downstream population growth. Increasing consumption in the upper Indus may thus locally lead to water scarcity issues, and increasingly be a driver of downstream water stress during the dry season. The quantified perspective on the evolving upstream-downstream linkages of the transboundary Indus basin, provided in this study, highlights that long-term water management here must account for rapid socio-economic change in the upper Indus and anticipate increasing upstream-downstream water competition between riparian states.


Sign in / Sign up

Export Citation Format

Share Document