scholarly journals Integrated Modeling of Water Supply and Demand Under Climate Change Impacts and Management Options in Tributary Basin of Tonle Sap Lake, Cambodia

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2462
Author(s):  
Tharo Touch ◽  
Chantha Oeurng ◽  
Yanan Jiang ◽  
Ali Mokhtar

An integrated modeling approach analyzing water demand and supply balances under management options in a river basin is essential for the management and adaptive measures of water resources in the future. This study evaluated the impacts of climate change on the hydrological regime by predicting the change in both monthly and seasonal streamflow, and identified water supply and demand relations under supply management options and environmental flow maintenance. To reach a better understanding of the consequences of possible climate change scenarios and adaptive management options on water supply, an integrated modeling approach was conducted by using the soil and water assessment tool (SWAT) and water evaluation and planning model (WEAP). Future scenarios were developed for the future period: 2060s (2051–2070), using an ensemble of three general circulation model (GCM) simulations: GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR, driven by the climate projection for representative concentration pathways (RCPs): 6.0 (medium emission scenario). The results indicated that, firstly, the future streamflow will decrease, resulting in a decline of future water availability. Secondly, water supply under natural flow conditions would support 46,167 ha of irrigation schemes and the water shortages will be more noticeable when environmental flow maintenance was considered. The study concludes that reservoir construction would be necessary for agriculture mitigation and adaptation to climate change. Furthermore, the water resources management options considering both supply and demand management are more effective and useful than supply management only, particularly in dealing with climate change impacts.

2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2021 ◽  
Author(s):  
Daniel Peters ◽  
Wendy Monk ◽  
Donald Baird

<p>The Peace-Athabasca Delta (PAD) in one of the largest (~6000 km<sup>2</sup>) freshwater deltaic ecosystem in the world.  This low relief, deltaic floodplain formed at the confluence of the Peace-Athabasca-Birch rivers the west end of Lake Athabasca in northwestern Canada.  Small changes in water level/depth have important implications for surface water connectivity and associated habitat quality The floodplains contain more than 1000 wetland-lake basins with varying degrees of connectivity to the main flow system.  Hydroperiod is influenced by occasional ice-jam and open-water inundations that recharge wetland basins.  This culturally important and biologically rich delta is a Ramsar Convention Wetland Site of International Importance, and is a key feature of the Wood Buffalo National Park (WBNP) that is listed as a UNESCO World Heritage Site.  The PAD ecosystem is influenced by contributing basin and local scale hydrological stressors from flow regulation (eg, hydroelectric dam, weirs), water and land use (eg, oil sands mining) and climate change.</p><p>Growing concern regarding increased cumulative effects on the delta led Indigenous Peoples petitioning UNESCO World Heritage Committee (WNC) to reassess the protection status of the park. The WBNP Action Plan was developed to address 17 UNESCO WHC recommendations to ensure maintenance of Outstanding Universal Value of the Park.  One key set of recommendations is to: 1) Conduct environmental flows assessments, to the highest international standard, in order to identify water flows needed to sustain the ecological functioning of the PAD under current and projected development and climate change; 2) Establish adequate baseline hydrological information for PAD assessments.</p><p>A significant scientific effort has been invested in the last four decades, particularly since 2010, in improving our understanding the relationship between streamflow, landscape controls and aquatic ecology in this cold-regions delta.  This information is key to assess historical and present states, learn from past development to inform planned development, and prepare for anticipated future hydro-ecological changes.  However, several key questions arise regarding what is the best approach to preparing for the future and managing such a complex system, what management options are possible within an environmental flow framework given known hydrological stressors, and what future ecosystem state does society want for the delta.  The goal of this presentation focused on the PAD is threefold:  i)  Provide an overview of major hydro-ecological research and water management;  ii)  Assess the potential applicability of riverine environmental flow frameworks to deltaic floodplain environments; and iii)  Explore the development of an environmental flow/water level framework and tools necessary to assess and manage changes to the aquatic ecology of this internationally important deltaic ecosystem.</p>


2012 ◽  
Vol 16 (4) ◽  
pp. 1063-1083 ◽  
Author(s):  
A. N. Laghari ◽  
D. Vanham ◽  
W. Rauch

Abstract. The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions – and especially groundwater extractions – have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.


Water ◽  
2012 ◽  
Vol 4 (1) ◽  
pp. 28-44 ◽  
Author(s):  
Saloua Rochdane ◽  
Barbara Reichert ◽  
Mohammed Messouli ◽  
Abdelaziz Babqiqi ◽  
Mohammed Yacoubi Khebiza

Author(s):  
Ernest Othieno Odwori

Climate change is already having noticeable effects on water utilities in Nzoia River Basin. Extreme weather and climate-related occurrences are becoming more common and intense, as predicted by the Intergovernmental Panel on Climate Change (IPCC), Third Assessment Report. Because most water utilities are unprepared, the repercussions might be severe. The water supply infrastructure is built for resiliency and sustainability of operations during weather events or other circumstances that could potentially interrupt services; but when events that were historically considered to be “100-year” events happen more and more frequently, utilities must prepare for a new normal. These extreme events are occurring or being exceeded more regularly, and as a result, the past may no longer be a reliable predictor of the future. In Nzoia River Basin, the water supply infrastructure currently designed for historical climate conditions is more vulnerable to future weather extremes and climate change. This study assessed the effect of climate change on drinking water utilities in Nzoia River Basin. A cross-sectional survey design was used. Three counties were randomly selected from the basin for study with Busia representing the lower catchment, Kakamega middle catchment and Trans Nzoia upper catchment. The study was carried out from May, 2017 to September, 2017. In-depth expert interviews and brainstorming sessions were used to identify the climate change impacts affecting drinking water utilities experienced in the last ten years in the basin. A carefully selected team of water and climate change experts consisting of decision makers, practitioners, managers, scientists and technology adopters were used to rank the severity of the climate change impacts. Climate change occurring in Nzoia River Basin is expected to have a wide range of consequences for drinking water utilities. By assessing its potential impacts on water utilities, we become better positioned to make improvements today to decrease the future risks. The results of this study provide valuable insights for the national and county governments in preparing to effectively anticipate and respond to the relevant issues that they can expect to face in the coming century.


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


Author(s):  
X. Costoya ◽  
M. deCastro ◽  
D. Carvalho ◽  
Z. Feng ◽  
M. Gómez-Gesteira

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


Sign in / Sign up

Export Citation Format

Share Document