scholarly journals An elusive search for regional flood frequency estimates in the River Nile basin

2012 ◽  
Vol 16 (9) ◽  
pp. 3149-3163 ◽  
Author(s):  
P. Nyeko-Ogiramoi ◽  
P. Willems ◽  
F. M. Mutua ◽  
S. A. Moges

Abstract. Estimation of peak flow quantiles in ungauged catchments is a challenge often faced by water professionals in many parts of the world. Approaches to address such problem exist, but widely used techniques such as flood frequency regionalisation is often not subjected to performance evaluation. In this study, the jack-knifing principle is used to assess the performance of the flood frequency regionalisation in the complex and data-scarce River Nile basin by examining the error (regionalisation error) between locally and regionally estimated peak flow quantiles for different return periods (QT). Agglomerative hierarchical clustering based algorithms were used to search for regions with similar hydrological characteristics. Hydrological data employed were from 180 gauged catchments and several physical characteristics in order to regionalise 365 identified catchments. The Generalised Extreme Value (GEV) distribution, selected using L-moment based approach, was used to construct regional growth curves from which peak flow growth factors could be derived and mapped through interpolation. Inside each region, variations in at-site flood frequency distribution were modelled by regression of the mean annual maximum peak flow (MAF) versus catchment area. The results showed that the performance of the regionalisation is heavily dependent on the historical flow record length and the similarity of the hydrological characteristics inside the regions. The flood frequency regionalisation of the River Nile basin can be improved if sufficient flow data of longer record length of at least 40 yr become available.

2012 ◽  
Vol 9 (3) ◽  
pp. 2675-2715
Author(s):  
P. Nyeko-Ogiramoi ◽  
P. Willems ◽  
F. M. Mutua ◽  
S. A. Moges

Abstract. Estimation of peak flow quantiles in ungauged catchments is a challenge often faced by water professionals in many parts of the world. Approaches to address such problem exist but widely used technique such as flood frequency regionalization is often not subjected to performance evaluation. In this study we used the jack-knifing principle to assess the performance of the flood frequency regionalization in the complex and data scarce River Nile basin by examining the error (regionalization error) between locally and regionally estimated peak flow quantiles for different return periods (QT). Agglomerative hierarchical clustering based algorithms were used to search for regions with similar hydrological characteristics taking into account the huge catchment area and strong climatic differences across the area. Hydrological data sets employed were from 180 gauged catchments and several physical characteristics in order to regionalize 365 identified catchments. The GEV distribution, selected using L-moment based approach, was used to construct regional growth curves from which peak flow growth factors (QT/MAF) could be derived and mapped through interpolation. Inside each region, variations in at-site flood frequency distribution were modeled by regression of the mean annual maximum peak flow (MAF) versus catchment area. The results show that the performance of the regionalization is heavily dependent on the historical flow record length and the similarity of the hydrological characteristics inside the regions. The flood frequency regionalization of the River Nile basin can be improved if sufficient flow data of longer record length × 40 become available.


2012 ◽  
Vol 4 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Abhijit Bhuyan ◽  
Munindra Borah

The annual maximum discharge data of six gauging sites have been considered for L-moment based regional flood frequency analysis of Tripura, India. Homogeneity of the region has been tested based on heterogeneity measure (H) using method of L-moment. Based on heterogeneity measure it has been observed that the region consist of six gauging sites is homogeneous. Different probability distributions viz. Generalized extreme value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO), Pearson Type III (PE3) and Wakebay (WAK) have been considered for this investigation. PE3, GNO and GEV have been identified as the candidate distributions based on the L-moment ratio diagram and ZDIST -statistics criteria. Regional growth curves for three candidate distributions have been developed for gauged and ungauged catchments. Monte Carlo simulations technique has also been used to estimate accuracy of the estimated regional growth curves and quantiles. From simulation study it has been observed that PE3 distribution is the robust one.


1987 ◽  
Vol 78 (4) ◽  
pp. 305-313 ◽  
Author(s):  
M. C. Acreman ◽  
A. Werritty

ABSTRACTThe index flood/regional growth curve method is the most commonly used procedure for estimating a design flood at an ungauged site in the United Kingdom when only the instantaneous peak discharge is required. This paper summarises recent work in Scotland in which the authors have refined the equations for estimating the index flood from the physical characteristics of the drainage basin and have proposed new methods for classifying basins to increase the hydrological homogeneity of the regions on which the growth curves are based. A new algorithm for estimating regional growth curves is reported which allows for correlation between flood magnitude at different sites. Simulation experiments are described which highlight the consequences of the data failing to meet the assumptions of the models used.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1669 ◽  
Author(s):  
Nam Kim ◽  
Mun-Ju Shin

Hourly flood flow estimation for gauged and ungauged catchments is a prerequisite for planning and water management. Various methods have been applied in a multitude of studies to calculate the peak flow for ungauged catchments. However, it is not simple for engineers to use the existing methods in practical applications. An easier method is suggested for this purpose in this study. The authors estimated the relationship between the runoff coefficient, intensity of rainfall, and curve number, and then utilized the relationship to calculated the peak flow using the rational method for ungauged catchments. Rainfall and flood time series for ungauged study catchments were generated by a simple data generation method and a distributed rainfall–runoff model. Results showed that the runoff coefficients simulated using the estimated relationship reasonably agree with the runoff coefficients in the studied ungauged catchments. In addition, the peak flow simulated using the rational method and the relationship highly agree with the peak flow in the ungauged catchments. Therefore, the peak flow in ungauged catchments can be easily calculated by this method, which is more pragmatic for engineers.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 601 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Tomasz Stachura ◽  
Grzegorz Kaczor

The aim of the work was to develop a new empirical model for calculating the peak annual flows of a given frequency of occurrence (QT) in the ungauged catchments of the upper Vistula basin in Poland. The approach to the regionalization of the catchment and the selection of the optimal form of the empirical model are indicated as a novelty of the proposed research. The research was carried out on the basis of observation series of peak annual flows (Qmax) for 41 catchments. The analysis was performed in the following steps: statistical verification of data; estimation of Qmax flows using kernel density estimation; determination of physiographic and meteorological characteristics affecting the Qmax flow volume; determination of the value of dimensionless quantiles for QT flow calculation in the upper Vistula basin; verification of the determined correlation for the calculation of QT flows in the upper Vistula basin. Based on the research we conducted, we found that the following factors have the greatest impact on the formation of flood flows in the upper Vistula basin: the size of catchment area; the height difference in the catchment area; the density of the river network; the soil imperviousness index; and the volume of normal annual precipitation. The verification procedure that we performed made it possible to conclude that the developed empirical model functions correctly.


2015 ◽  
Vol 19 (1) ◽  
pp. 379-387 ◽  
Author(s):  
I. Andrés-Doménech ◽  
R. García-Bartual ◽  
A. Montanari ◽  
J. B. Marco

Abstract. Measuring the impact of climate change on flood frequency is a complex and controversial task. Identifying hydrological changes is difficult given the factors, other than climate variability, which lead to significant variations in runoff series. The catchment filtering role is often overlooked and thus may hinder the correct identification of climate variability signatures on hydrological processes. Does climate variability necessarily imply hydrological variability? This research aims to analytically derive the flood frequency distribution based on realistic hypotheses about the rainfall process and the rainfall–runoff transformation. The annual maximum peak flow probability distribution is analytically derived to quantify the filtering effect of the rainfall–runoff process on climate change. A sensitivity analysis is performed according to typical semi-arid Mediterranean climatic and hydrological conditions, assuming a simple but common scheme for the rainfall–runoff transformation in small-size ungauged catchments, i.e. the CN-SCS model. Variability in annual maximum peak flows and its statistical significance are analysed when changes in the climatic input are introduced. Results show that depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant, especially when the event rainfall volume distribution is not strongly skewed. Results largely depend on the return period: for large return periods, peak flow variability is significantly affected by the climatic input, while for lower return periods, infiltration processes smooth out the impact of climate change.


2020 ◽  
Vol 11 (S1) ◽  
pp. 310-321 ◽  
Author(s):  
Mohamed El Mehdi Saidi ◽  
Tarik Saouabe ◽  
Abdelhafid El Alaoui El Fels ◽  
El Mahdi El Khalki ◽  
Abdessamad Hadri

Abstract Flood frequency analysis could be a tool to help decision-makers to size hydraulic structures. To this end, this article aims to compare two analysis methods to see how rare an extreme hydrometeorological event is, and what could be its return period. This event caused many deadly floods in southwestern Morocco. It was the result of unusual atmospheric conditions, characterized by a very low atmospheric pressure off the Moroccan coast and the passage of the jet stream further south. Assessment of frequency and return period of this extreme event is performed in a High Atlas watershed (the Ghdat Wadi) using historical floods. We took into account, on the one hand, flood peak flows and, on the other hand, flood water volumes. Statistically, both parameters are better adjusted respectively to Gamma and Log Normal distributions. However, the peak flow approach underestimates the return period of long-duration hydrographs that do not have a high peak flow, like the 2014 event. The latter is indeed better evaluated, as a rare event, by taking into account the flood water volumes. Therefore, this parameter should not be omitted in the calculation of flood probabilities for watershed management and the sizing of flood protection infrastructure.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1465 ◽  
Author(s):  
Getenet Nigussie ◽  
Mamaru A. Moges ◽  
Michael M. Moges ◽  
Tammo S. Steenhuis

Planning and decision making for new irrigation development projects requires the systematic assessment of irrigable land together with available water resources. The data required are usually not available in developing countries, and therefore a method was developed for quantifying surface water resources and potentially irrigable land in ungauged watersheds in the Upper Blue Nile Basin using Soil and Water Assessment Tool (SWAT) model and Multi-Criterion Decision Evaluation (MCDE). The method was tested using the Lah river basin in the Jabitenan district and then applied in the whole area, including ungauged areas. In MCDE, soil type, slope, land use, and river proximity were considered. Onion, Cabbage and Tomato were grown on the identified irrigable areas. The predicted monthly stream discharge agreed well with observed values, with Nash and Sutcliffe efficiencies of 0.87 during calibration and 0.68 for validation. The SWAT model calibrated parameters from the gauged catchment were used to simulate the discharge of the ungauged catchments. The potential irrigable land was determined in Jabitenan woreda and included the Rivers like Birr, Tikurwuha, Gunagun, Leza Lah, Geray, Arara, Debolah, Guysa, and Silala, with an area of 460 km2. By evaluating gross irrigation demand of irrigable land with available flow in rivers (both observed and simulated), the actual surface irrigation potential was 47 km2. The main limitation for surface irrigation in all districts was the available water and not the land suitable for irrigation. Therefore, the study suggests that in order to irrigate a greater portion of the irrigable land, water should be stored during the monsoon rain phase for use in the last part of the dry phase.


Sign in / Sign up

Export Citation Format

Share Document