scholarly journals Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose

2013 ◽  
Vol 17 (5) ◽  
pp. 1913-1931 ◽  
Author(s):  
D. L. Shrestha ◽  
D. E. Robertson ◽  
Q. J. Wang ◽  
T. C. Pagano ◽  
H. A. P. Hapuarachchi

Abstract. The quality of precipitation forecasts from four Numerical Weather Prediction (NWP) models is evaluated over the Ovens catchment in Southeast Australia. Precipitation forecasts are compared with observed precipitation at point and catchment scales and at different temporal resolutions. The four models evaluated are the Australian Community Climate Earth-System Simulator (ACCESS) including ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km, ACCESS-A 12 km, and ACCESS-VT 5 km. The skill of the NWP precipitation forecasts varies considerably between rain gauging stations. In general, high spatial resolution (ACCESS-A and ACCESS-VT) and regional (ACCESS-R) NWP models overestimate precipitation in dry, low elevation areas and underestimate in wet, high elevation areas. The global model (ACCESS-G) consistently underestimates the precipitation at all stations and the bias increases with station elevation. The skill varies with forecast lead time and, in general, it decreases with the increasing lead time. When evaluated at finer spatial and temporal resolution (e.g. 5 km, hourly), the precipitation forecasts appear to have very little skill. There is moderate skill at short lead times when the forecasts are averaged up to daily and/or catchment scale. The precipitation forecasts fail to produce a diurnal cycle shown in observed precipitation. Significant sampling uncertainty in the skill scores suggests that more data are required to get a reliable evaluation of the forecasts. The non-smooth decay of skill with forecast lead time can be attributed to diurnal cycle in the observation and sampling uncertainty. Future work is planned to assess the benefits of using the NWP rainfall forecasts for short-term streamflow forecasting. Our findings here suggest that it is necessary to remove the systematic biases in rainfall forecasts, particularly those from low resolution models, before the rainfall forecasts can be used for streamflow forecasting.

2012 ◽  
Vol 9 (11) ◽  
pp. 12563-12611 ◽  
Author(s):  
D. L. Shrestha ◽  
D. E. Robertson ◽  
Q. J. Wang ◽  
T. C. Pagano ◽  
P. Hapuarachchi

Abstract. The quality of precipitation forecasts from four Numerical Weather Prediction (NWP) models is evaluated over the Ovens catchment in southeast Australia. Precipitation forecasts are compared with observed precipitation at point and catchment scales and at different temporal resolutions. The four models evaluated are the Australian Community Climate Earth-System Simulator (ACCESS) including ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km, ACCESS-A 12 km, and ACCESS-VT 5 km. The high spatial resolution NWP models (ACCESS-A and ACCESS-VT) appear to be relatively free of bias (i.e. <30%) for 24 h total precipitation forecasts. The low resolution models (ACCESS-R and ACCESS-G) have widespread systematic biases as large as 70%. When evaluated at finer spatial and temporal resolution (e.g. 5 km, hourly) against station observations, the precipitation forecasts appear to have very little skill. There is moderate skill at short lead times when the forecasts are averaged up to daily and/or catchment scale. The skill decreases with increasing lead times and the global model ACCESS-G does not have significant skill beyond 7 days. The precipitation forecasts fail to produce a diurnal cycle shown in observed precipitation. Significant sampling uncertainty in the skill scores suggests that more data are required to get a reliable evaluation of the forecasts. Future work is planned to assess the benefits of using the NWP rainfall forecasts for short-term streamflow forecasting. Our findings here suggest that it is necessary to remove the systematic biases in rainfall forecasts, particularly those from low resolution models, before the rainfall forecasts can be used for streamflow forecasting.


2009 ◽  
Vol 4 (4) ◽  
pp. 600-605 ◽  
Author(s):  
Hadi Kardhana ◽  
◽  
Akira Mano ◽  

Numerical weather prediction (NWP) is useful in flood prediction using a rainfall-runoff model. Uncertainty occurring in the forecast, however, adversely affects flood prediction accuracy, in addition to uncertainty inherent in the rainfall-runoff model. Clarifying this uncertainty and its magnitude is expected to lead to wider forecast applications. Taking the case of Japan’s Shichikashuku Dam, 6 flood events between 2002 and 2007 were analyzed. NWP was based on short-range forecasts by the Japan Meteorological Agency (JMA). The rainfall-runoff model is based on a distributed tank model. This research calculates uncertainty by identifying and quantifying the relative error of forecasts by a) NWP and b) the runoff model. Results showed that NAP is the main cause of flood forecast uncertainty. They also showed the correlation between forecast lead time and uncertainty. Uncertainty rises with longer lead time, corresponding to the magnitude of observed discharge and precipitation.


2013 ◽  
Vol 17 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
D. E. Robertson ◽  
D. L. Shrestha ◽  
Q. J. Wang

Abstract. Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post-processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post-processing raw numerical weather prediction (NWP) rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast lead times. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post-process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed bivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast lead times and for cumulative totals throughout all forecast lead times. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post-processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post-processing method for a wider range of climatic conditions and also investigate the benefits of using post-processed rainfall forecasts for flood and short-term streamflow forecasting.


2013 ◽  
Vol 10 (5) ◽  
pp. 6765-6806 ◽  
Author(s):  
D. E. Robertson ◽  
D. L. Shrestha ◽  
Q. J. Wang

Abstract. Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post processing raw NWP rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast periods. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed multivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast periods and for cumulative totals throughout the forecast periods. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post processing method for a wider range of climatic conditions and also investigate the benefits of using post processed rainfall forecast for flood and short term streamflow forecasting.


2021 ◽  
Author(s):  
Sven Ulbrich ◽  
Christian Welzbacher ◽  
Kobra Khosravianghadikolaei ◽  
Michael Hoff ◽  
Alberto de Lozar ◽  
...  

&lt;p&gt;The SINFONY project at Deutscher Wetterdienst (DWD) aims to produce seamless precipitation forecast products from minutes up to 12 hours, with particular focus on convective events. While the near future predictions are typically from nowcasting procedures using radar data, the numerical weather prediction (NWP) aims at longer time scales. The lead-time in the latest available forecast is usually too long for merging both the nowcasting and NWP output to produce reliable seamless predictions.&lt;/p&gt;&lt;p&gt;At DWD, the current forecasts are produced by the short range numerical weather prediction (SRNWP) &lt;span&gt;making use of a&lt;/span&gt; continuous assimilation cycle with relatively long cutoff times and using 1-moment microphysics. In order to reduce the differences in the precipitation to the &lt;span&gt;nowcasting &lt;/span&gt;on the NWP side, we use two different approaches. First, we reduce the lead-time from the model start by running 1-hourly forecasts based on an assimilation cycle with shorter data cutoff. Secondly, we use new observational systems in the assimilation cycle, such as radar or satellite data to capture and represent strong convective activity. This procedure is called Rapid Update Cycle (RUC). As an additional measure, we introduce a 2-Moment microphysics scheme into the numerical model, resulting in a better representation of the radar reflectivities. In order to keep the model state similar to that of the SRNWP, the RUC is a time limited assimilation cycle starting from forecasts of the SRNWP at pre-defined times.&lt;/p&gt;&lt;p&gt;The introduction of the 2-Moment scheme leads to a spin-up affecting both the assimilation cycle and the short forecasts. The resulting effects are analysed by comparison with the corresponding assimilation cycle using the 1-Moment scheme. As a complementary approach for the analysis, the routine cycle is run with the 2-Moment scheme. The forecast quality is used as a measure to compare the results with respect to precipitation and additional observed parameters. It is shown in how far the resulting improvements are related to the assimilation and momentum scheme, or to the higher frequency of forecasts.&lt;/p&gt;


2017 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
Hua Deng ◽  
Yan Li ◽  
Yingchao Zhang ◽  
Hou Zhou ◽  
Peipei Cheng ◽  
...  

The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction. Predicción de vientos en una altiplanicie a la altura del eje con el esquema de la Universidad Yonsei/Modelo Superficie Terrestre Noah y la predicción estadísticaResumenLa estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.


2021 ◽  
Vol 4 ◽  
pp. 50-68
Author(s):  
S.А. Lysenko ◽  
◽  
P.О. Zaiko ◽  

The spatial structure of land use and biophysical characteristics of land surface (albedo, leaf index, and vegetation cover) are updated using the GLASS (Global Land Surface Satellite) and GLC2019 (Global Land Cover, 2019) modern satellite databases for mesoscale numerical weather prediction with the WRF model for the territory of Belarus. The series of WRF-based numerical experiments was performed to verify the influence of the updated characteristics on the forecast quality for some difficult to predict winter cases. The model was initialized by the GFS (Global Forecast System, NCEP) global numerical weather prediction model. It is shown that the use of high-resolution land use data in the WRF and the consideration of the new albedo and leaf index distribution over the territory of Belarus can reduce the root-mean-square error (RMSE) of short-range (to 48 hours) forecasts of surface air temperature by 16–33% as compared to the GFS. The RMSE of the temperature forecast for the weather stations in Belarus for a forecast lead time of 12, 24, 36, and 48 hours decreased on average by 0.40°С (19%), 0.35°С (10%), 0.68°С (23%), and 0.56°С (15%), respectively. The most significant decrease in RMSE of the numerical forecast of temperature (up to 2.1 °С) was obtained for the daytime (for a lead time of 12 and 36 hours), when positive feedbacks between albedo and temperature of the land surface are manifested most. Keywords: numerical weather prediction, WRF, digital land surface model, albedo, leaf area index, forecast model validation


Sign in / Sign up

Export Citation Format

Share Document