scholarly journals Estimating root zone soil moisture using near-surface observations from SMOS

2014 ◽  
Vol 18 (1) ◽  
pp. 139-154 ◽  
Author(s):  
T. W. Ford ◽  
E. Harris ◽  
S. M. Quiring

Abstract. Satellite-derived soil moisture provides more spatially and temporally extensive data than in situ observations. However, satellites can only measure water in the top few centimeters of the soil. Root zone soil moisture is more important, particularly in vegetated regions. Therefore estimates of root zone soil moisture must be inferred from near-surface soil moisture retrievals. The accuracy of this inference is contingent on the relationship between soil moisture in the near-surface and the soil moisture at greater depths. This study uses cross correlation analysis to quantify the association between near-surface and root zone soil moisture using in situ data from the United States Great Plains. Our analysis demonstrates that there is generally a strong relationship between near-surface (5–10 cm) and root zone (25–60 cm) soil moisture. An exponential decay filter is used to estimate root zone soil moisture using near-surface soil moisture derived from the Soil Moisture and Ocean Salinity (SMOS) satellite. Root zone soil moisture derived from SMOS surface retrievals is compared to in situ soil moisture observations in the United States Great Plains. The SMOS-based root zone soil moisture had a mean R2 of 0.57 and a mean Nash–Sutcliffe score of 0.61 based on 33 stations in Oklahoma. In Nebraska, the SMOS-based root zone soil moisture had a mean R2 of 0.24 and a mean Nash–Sutcliffe score of 0.22 based on 22 stations. Although the performance of the exponential filter method varies over space and time, we conclude that it is a useful approach for estimating root zone soil moisture from SMOS surface retrievals.

2018 ◽  
Author(s):  
Sara Sadri ◽  
Eric F. Wood ◽  
Ming Pan

Abstract. Since April 2015, NASA's Soil Moisture Active Passive (SMAP) mission has monitored near-surface soil moisture, mapping the globe between the latitude bands of 85.044° N/S in 2–3 days depending on location. SMAP Level 3 passive radiometer product (SPL3SMP) measures the amount of water in the top 5 cm of soil except for regions of heavy vegetation (vegetation water content >4.5 kg/m2) and frozen or snow covered locations. SPL3SMP retrievals are spatially and temporally discontinuous, so the 33 months offers a short SMAP record length and poses a statistical challenge for meaningful assessment of its indices. The SMAP SPL4SMAU data product provides global surface and root zone soil moisture at 9-km resolution based on assimilating the SPL3SMP product into the NASA Catchment land surface model. Of particular interest to SMAP-based agricultural applications is a monitoring product that assesses the SMAP near-surface soil moisture in terms of probability percentiles for dry and wet conditions. We describe here SMAP-based indices over the continental United States (CONUS) based on both near-surface and root zone soil moisture percentiles. The percentiles are based on fitting a Beta distribution to the retrieved moisture values. To assess the data adequacy, a statistical comparison is made between fitting the distribution to VIC soil moisture values for the days when SPL3SMP are available, versus fitting to a 1979–2017 VIC data record. For the cold season (November–April), 57 % of grids were deemed to be consistent between the periods, and 68 % in the warm season (May–October), based on a Kolmogorov–Smirnov statistical test. It is assumed that if grids passed the consistency test using VIC data, then the grid had sufficient SMAP data. Our near-surface and root zone drought index on maps are shown to be similar to those produced by the U.S. Drought Monitor (from D0-D4) and GRACE. In a similar manner, we extend the index to include pluvial conditions using indices W0-W4. This study is a step forward towards building a national and international soil moisture monitoring system, without which, quantitative measures of drought and pluvial conditions will remain difficult to judge.


2013 ◽  
Vol 10 (6) ◽  
pp. 8325-8364 ◽  
Author(s):  
T. W. Ford ◽  
E. Harris ◽  
S. M. Quiring

Abstract. Satellite-derived soil moisture provides more spatially and temporally extensive data than in situ observations. However, satellites can only measure water in the top few centimeters of the soil. Therefore estimates of root zone soil moisture must be inferred from near-surface soil moisture retrievals. The accuracy of this inference is contingent on the relationship between soil moisture in the near-surface and at greater depths. This study uses cross correlation analysis to quantify the association between near-surface and root zone soil moisture using in situ data from the United States Great Plains. Our analysis demonstrates that there is generally a strong relationship between near-surface (5 to 10 cm) and root zone (25 to 60 cm) soil moisture. An exponential decay filter is applied to estimate root zone soil moisture from near-surface observations. Reasonably skillful predictions of root zone soil moisture can be made using near-surface observations. The same method is then applied to evaluate whether soil moisture derived from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to accurately estimate root zone soil moisture. We conclude that the exponential filter method is a useful approach for accurately predicting root zone soil moisture from SMOS surface retrievals.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


2015 ◽  
Vol 12 (8) ◽  
pp. 7971-8004 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. Nine years of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased Mean Square Error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas) and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of one year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only one year of data is available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, but locally and in extreme years there is a risk of increased errors.


2008 ◽  
Vol 12 (6) ◽  
pp. 1323-1337 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
T. Pellarin ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.


2017 ◽  
Vol 18 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Sarith P. P. Mahanama

Abstract NASA’s Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2–3 days and a latency of 24 h. Here, to enhance the utility of the SMAP data, an approach is presented for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3109
Author(s):  
Roïya Souissi ◽  
Ahmad Al Bitar ◽  
Mehrez Zribi

This paper explores the accuracy in using an artificial neural network (ANN) to estimate root-zone soil moisture (RZSM) at multiple worldwide locations using only in situ surface soil moisture (SSM) as a training dataset. The paper also addresses the transferability of the trained ANN across climatic and soil texture conditions. Data from the International Soil Moisture Network (ISMN) were collected for several networks with variable soil texture and climate classes. Several scaling, feature extraction, and training approaches were tested. An artificial neural network employing rolling averages (ANNRAV) of SSM over 10, 30, and 90 days was developed. The results show that applying a standard scaling (SSCA) to the ANN input features improves the correlation, Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE) for 52%, 91%, and 87%, respectively, of the tested stations, compared to MinMax scaling (MMSCA). Different training sets are suggested, namely, training on data from all networks, data from one network, or data of all networks excluding one. Based on these trainings, new transferability (TranI) and contribution (ContI) indices are defined. The results show that one network cannot provide the best prediction accuracy if used alone to train the ANN. They also show that the removal of the less contributing networks enhances performance. For example, elimination of the densest network (SCAN) from the training enhances the mean correlation by 20.5% and the mean NSE by 42.5%. This motivates the implementation of a data filtering technique based on the ANN’s performance. A median, max, and min correlation of 0.77, 0.96, and 0.65, respectively, are obtained by the model after data filtering. The performances are also analyzed with respect to the covered climatic regions and soil texture, providing insights into the robustness and limitations of the approach, namely, the need for complementary information in highly evaporative regions. In fact, the ANN using only SSM to predict RZSM has low performance when decoupling between the surface and root zones is observed. The application of ANN to obtain spatialized RZSM will require integrating remote sensing-based surface soil moisture in the future.


2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

<p>Mapping near-surface soil moisture (<em>θ</em>) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address <em>θ</em> in large-scale modelling with coarse spatial resolution such as at the landscape level. However, <em>θ</em> estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the “Alento” hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) <em>θ</em> maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based <em>θ</em> patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based <em>θ</em> data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring <em>θ</em> at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of <em>θ</em> were compared to pixel-scale (17 m × 17 m), SAR-based <em>θ</em> estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of <em>θ</em> (Nov 2018) integrating 136 in situ, sensor-based <em>θ</em> (<em>θ</em><sub>insitu</sub>) and 74 gravimetric-based <em>θ</em> (<em>θ</em><sub>gravimetric</sub>) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m³m<sup>-</sup>³ and R²=0.92, respectively with RMSE=0.041 m³m<sup>-</sup>³ and R²=0.91. First results further reveal that estimated satellite-based <em>θ</em> patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based <em>θ</em> retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).</p>


2007 ◽  
Vol 8 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Joaquín Muñoz Sabater ◽  
Lionel Jarlan ◽  
Jean-Christophe Calvet ◽  
François Bouyssel ◽  
Patricia De Rosnay

Abstract Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter (EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best performances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil moisture analysis based on remotely sensed surface soil moisture observations at a global scale.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
Nunzio Romano ◽  
...  

Reliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNovSAR) or the combination of 43 SAR and 10 terrain parameters (θNovSAR+Terrain). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the “Alento” hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNovSAR+Terrain with 0.025 and 0.020 m3 m−3, and 89% compared to θNovSAR with 0.028 and 0.022 m3 m−3, and 86% in terms of RMSE, MAE, and R2). The higher explanatory power for θNovSAR+Terrain is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon.


Sign in / Sign up

Export Citation Format

Share Document