scholarly journals Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes

2015 ◽  
Vol 19 (10) ◽  
pp. 4201-4213 ◽  
Author(s):  
A. Molina ◽  
V. Vanacker ◽  
E. Brisson ◽  
D. Mora ◽  
V. Balthazar

Abstract. Andean headwater catchments are an important source of freshwater for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes in these catchments. In this paper, we assess change in streamflow based on long time series of hydrometeorological data (1974–2008) and land cover reconstructions (1963–2009) in the Pangor catchment (282 km2) located in the tropical Andes. Three main land cover change trajectories can be distinguished during the period 1963–2009: (1) expansion of agricultural land by an area equal to 14 % of the catchment area (or 39 km2) in 46 years' time, (2) deforestation of native forests by 11 % (or −31 km2) corresponding to a mean rate of 67 ha yr−1, and (3) afforestation with exotic species in recent years by about 5 % (or 15 km2). Over the time period 1963–2009, about 50 % of the 64 km2 of native forests was cleared and converted to agricultural land. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow, which exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term change in precipitation but very likely result from anthropogenic disturbances associated with land cover change.

2015 ◽  
Vol 12 (6) ◽  
pp. 5219-5250 ◽  
Author(s):  
A. Molina ◽  
V. Vanacker ◽  
E. Brisson ◽  
D. Mora ◽  
V. Balthazar

Abstract. Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974–2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.


2015 ◽  
Vol 10 (5) ◽  
pp. 054012 ◽  
Author(s):  
Roland Kraemer ◽  
Alexander V Prishchepov ◽  
Daniel Müller ◽  
Tobias Kuemmerle ◽  
Volker C Radeloff ◽  
...  

CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2020 ◽  
Vol 94 ◽  
Author(s):  
A.L. May-Tec ◽  
N.A. Herrera-Castillo ◽  
V.M. Vidal-Martínez ◽  
M.L. Aguirre-Macedo

Abstract We present a time series of 13 years (2003–2016) of continuous monthly data on the prevalence and mean abundance of the trematode Oligogonotylus mayae for all the hosts involved in its life cycle. We aimed to determine whether annual (or longer than annual) environmental fluctuations affect these infection parameters of O. mayae in its intermediate snail host Pyrgophorus coronatus, and its second and definitive fish host Mayaheros urophthalmus from the Celestun tropical coastal lagoon, Yucatan, Mexico. Fourier time series analysis was used to identify infection peaks over time, and cross-correlation among environmental forcings and infection parameters. Our results suggest that the transmission of O. mayae in all its hosts was influenced by the annual patterns of temperature, salinity and rainfall. However, there was a biannual accumulation of metacercarial stages of O. mayae in M. urophthalmus, apparently associated with the temporal range of the El Niño-Southern Oscillation (five years) and the recovery of the trematode population after a devasting hurricane. Taking O. mayae as an example of what could be happening to other trematodes, it is becoming clear that environmental forcings acting at long-term temporal scales affect the population dynamics of these parasites.


Author(s):  
Peter Caccetta ◽  
Suzanne Furby ◽  
Jeremy Wallace ◽  
Xiaoliang Wu ◽  
Gary Richards ◽  
...  

Author(s):  
Wayan Damar Windu Kurniawan

he availability of land for fulfillment of space in the Sarbagita coastal area is increasingly limited. This iscaused by the rapid development of tourism in the Sarbagita coastal region, which can eliminate a large portion ofproductive agricultural land. This study specifically examines the probability value of land cover change, especially fromnon-built up area to built up area, in the Sarbagita coastal area until 2030. Calculation of the probability of land coverchange is done through fuzzy set logic which is assessed based on 1 main parameter, namely tourist location and 2supporting parameters, namely accessibility and service facilities, and also limiting factors. The value of the fuzzymembership is taken from Landsat images from 1995 to 2015. The results show the probability of changes in land coverhas values from 0 (very low) to 0.97 (very high). This means that there is no one land that must change (value 1) fromnon-built land to being built. The probability of a high land cover change tends to follow the road network pattern.  


2021 ◽  
Vol 13 (19) ◽  
pp. 3951
Author(s):  
Kim André Vanselow ◽  
Harald Zandler ◽  
Cyrus Samimi

Greening and browning trends in vegetation have been observed in many regions of the world in recent decades. However, few studies focused on dry mountains. Here, we analyze trends of land cover change in the Western Pamirs, Tajikistan. We aim to gain a deeper understanding of these changes and thus improve remote sensing studies in dry mountainous areas. The study area is characterized by a complex set of attributes, making it a prime example for this purpose. We used generalized additive mixed models for the trend estimation of a 32-year Landsat time series (1988–2020) of the modified soil adjusted vegetation index, vegetation data, and environmental and socio-demographic data. With this approach, we were able to cope with the typical challenges that occur in the remote sensing analysis of dry and mountainous areas, including background noise and irregular data. We found that greening and browning trends coexist and that they vary according to the land cover class, topography, and geographical distribution. Greening was detected predominantly in agricultural and forestry areas, indicating direct anthropogenic drivers of change. At other sites, greening corresponds well with increasing temperature. Browning was frequently linked to disastrous events, which are promoted by increasing temperatures.


Sign in / Sign up

Export Citation Format

Share Document