scholarly journals Technical note: Improving the AWAT filter with interpolation schemes for advanced processing of high resolution data

2016 ◽  
Author(s):  
Andre Peters ◽  
Thomas Nehls ◽  
Gerd Wessolek

Abstract. Weighing lysimeters with appropriate data filtering yield the most precise and unbiased information for precipitation (P) and evapotranspiration (ET). A recently introduced filter scheme for such data is the AWAT (Adaptive Window and Adaptive Threshold) filter [Peters, A., Nehls, T., Schonsky, H., and Wessolek, G.: Separating precipitation and evapotranspiration from noise – a new filter routine for high-resolution lysimeter data, Hydrol. Earth Syst. Sci., 18, 1189–1198, doi:10.5194/hess-18-1189-2014, 2014]. The filter applies an adaptive threshold to separate significant from insignificant mass changes, guaranteeing that P and ET are not overestimated, and uses a step interpolation between the significant mass changes. In this contribution we show that the step interpolation scheme, which reflects the resolution of the measuring system, can lead to unrealistic prediction of P and ET, especially if they are required in high temporal resolution. We introduce linear and spline interpolation schemes to overcome these problems. To guarantee that medium to strong precipitation events abruptly following low or zero fluxes are not smoothed in an unfavourable way, a simple heuristic selection criterion is used, which attributes such precipitations to the step interpolation. The three interpolation schemes (step, linear and spline) are tested and compared using a data set from a grass-reference lysimeter with one minute resolution, ranging from 1 January to 5 August 2014. The selected output resolutions for P and ET prediction are one day, one hour and 10 minutes. As expected, the step scheme yielded reasonable flux rates only for a resolution of one day, whereas the other two schemes are well able to yield reasonable results for any resolution. The spline scheme returned slightly better results than the linear scheme concerning the differences between filtered values and raw data. Moreover, this scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound. Since computational burden is not problematic for any of the interpolation schemes, we suggest to use always the spline scheme.

2016 ◽  
Vol 20 (6) ◽  
pp. 2309-2315 ◽  
Author(s):  
Andre Peters ◽  
Thomas Nehls ◽  
Gerd Wessolek

Abstract. Weighing lysimeters with appropriate data filtering yield the most precise and unbiased information for precipitation (P) and evapotranspiration (ET). A recently introduced filter scheme for such data is the AWAT (Adaptive Window and Adaptive Threshold) filter (Peters et al., 2014). The filter applies an adaptive threshold to separate significant from insignificant mass changes, guaranteeing that P and ET are not overestimated, and uses a step interpolation between the significant mass changes. In this contribution we show that the step interpolation scheme, which reflects the resolution of the measuring system, can lead to unrealistic prediction of P and ET, especially if they are required in high temporal resolution. We introduce linear and spline interpolation schemes to overcome these problems. To guarantee that medium to strong precipitation events abruptly following low or zero fluxes are not smoothed in an unfavourable way, a simple heuristic selection criterion is used, which attributes such precipitations to the step interpolation. The three interpolation schemes (step, linear and spline) are tested and compared using a data set from a grass-reference lysimeter with 1 min resolution, ranging from 1 January to 5 August 2014. The selected output resolutions for P and ET prediction are 1 day, 1 h and 10 min. As expected, the step scheme yielded reasonable flux rates only for a resolution of 1 day, whereas the other two schemes are well able to yield reasonable results for any resolution. The spline scheme returned slightly better results than the linear scheme concerning the differences between filtered values and raw data. Moreover, this scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound. Since computational burden is not problematic for any of the interpolation schemes, we suggest always using the spline scheme.


2019 ◽  
Vol 11 (9) ◽  
pp. 2996-3023 ◽  
Author(s):  
Yongjiu Dai ◽  
Qinchuan Xin ◽  
Nan Wei ◽  
Yonggen Zhang ◽  
Wei Shangguan ◽  
...  

Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 89 ◽  
Author(s):  
De Luca ◽  
Galasso

In this work, the authors investigated the feasibility of calibrating a model which is suitable for the generation of continuous high-resolution rainfall series, by using only data from annual maximum rainfall (AMR) series, which are usually longer than continuous high-resolution data, or they are the unique available data set for many locations. In detail, the basic version of the Neyman–Scott Rectangular Pulses (NSRP) model was considered, and numerical experiments were carried out, in order to analyze which parameters can mostly influence the extreme value frequency distributions, and whether heavy rainfall reproduction can be improved with respect to the usual calibration with continuous data. The obtained results were highly promising, as the authors found acceptable relationships among extreme value distributions and statistical properties of intensity and duration for the pulses. Moreover, the proposed procedure is flexible, and it is clearly applicable for a generic rainfall generator, in which probability distributions and shape of the pulses, and extreme value distributions can assume any mathematical expression.


2000 ◽  
Vol 20 (1) ◽  
pp. 7-15 ◽  
Author(s):  
R. Heintzmann ◽  
G. Kreth ◽  
C. Cremer

Fluorescent confocal laser scanning microscopy allows an improved imaging of microscopic objects in three dimensions. However, the resolution along the axial direction is three times worse than the resolution in lateral directions. A method to overcome this axial limitation is tilting the object under the microscope, in a way that the direction of the optical axis points into different directions relative to the sample. A new technique for a simultaneous reconstruction from a number of such axial tomographic confocal data sets was developed and used for high resolution reconstruction of 3D‐data both from experimental and virtual microscopic data sets. The reconstructed images have a highly improved 3D resolution, which is comparable to the lateral resolution of a single deconvolved data set. Axial tomographic imaging in combination with simultaneous data reconstruction also opens the possibility for a more precise quantification of 3D data. The color images of this publication can be accessed from http://www.esacp.org/acp/2000/20‐1/heintzmann.htm. At this web address an interactive 3D viewer is additionally provided for browsing the 3D data. This java applet displays three orthogonal slices of the data set which are dynamically updated by user mouse clicks or keystrokes.


2007 ◽  
Vol 31 (2) ◽  
pp. 179-197 ◽  
Author(s):  
J.-C. Otto ◽  
K. Kleinod ◽  
O. König ◽  
M. Krautblatter ◽  
M. Nyenhuis ◽  
...  

The analysis and interpretation of remote sensing data facilitates investigation of land surface complexity on large spatial scales. We introduce here a geometrically high-resolution data set provided by the airborne High Resolution Stereo Camera (HRSC-A). The sensor records digital multispectral and panchromatic stereo bands from which a very high-resolution ground elevation model can be produced. After introducing the basic principles of the HRSC technique and data, applications of HRSC data within the multidisciplinary Research Training Group 437 are presented. Applications include geomorphologic mapping, geomorphometric analysis, mapping of surficial grain-size distribution, rock glacier kinematic analysis, vegetation monitoring and three-dimensional landform visualization. A final evaluation of the HRSC data based on three years of multipurpose usage concludes this presentation. A combination of image and elevation data opens up various possibilities for visualization and three-dimensional analysis of the land surface, especially in geomorphology. Additionally, the multispectral imagery of the HRSC data has potential for land cover mapping and vegetation monitoring. We consider HRSC data a valuable source of high-resolution terrain information with high applicability in physical geography and earth system science.


2016 ◽  
Vol 4 (3) ◽  
pp. T387-T394 ◽  
Author(s):  
Ankur Roy ◽  
Atilla Aydin ◽  
Tapan Mukerji

It is a common practice to analyze fracture spacing data collected from scanlines and wells at various resolutions for the purposes of aquifer and reservoir characterization. However, the influence of resolution on such analyses is not well-studied. Lacunarity is a parameter that is used for multiscale analysis of spatial data. In quantitative terms, at any given scale, it is a function of the mean and variance of the distribution of masses captured by a gliding a window of that scale (size) across any pattern of interest. We have described the application of lacunarity for delineating differences between scale-dependent clustering attributes of data collected at different resolutions along a scanline. Specifically, we considered data collected at different resolutions from two outcrop exposures, a pavement and a cliff section, of the Cretaceous turbititic sandstones of the Chatsworth Formation widely exposed in southern California. For each scanline, we analyzed data from low-resolution aerial or ground photographs and high-resolution ground measurements for scale-dependent clustering attributes. High-resolution data show larger values of scale-dependent lacunarity than their respective low-resolution counterparts. We further performed a bootstrap analysis for each data set to test for the significance of such clustering differences. We started with generating 300 realizations for each data set and then ran lacunarity analysis on them. It was seen that lacunarity for higher resolution data set lay significantly outside the upper 90th percentile values, thus proving that higher resolution data are distinctly different from random and fractures are clustered. We have therefore postulated that lower resolution data capture fracture zones that had relatively uniform spacing, whereas higher resolution data capture thin and short splay joints and sheared joints that contribute to fracture clustering. Such findings have important implications in terms of understanding organization of fractures in fracture corridors, which in turn is critical for modeling and upscaling exercises.


2018 ◽  
Vol 10 (4) ◽  
pp. 2097-2114 ◽  
Author(s):  
Lu Gao ◽  
Jianhui Wei ◽  
Lingxiao Wang ◽  
Matthias Bernhardt ◽  
Karsten Schulz ◽  
...  

Abstract. The Chinese Tian Shan (also known as the Chinese Tianshan Mountains, CTM) have a complex ecological environmental system. They not only have a large number of desert oases but also support many glaciers. The arid climate and the shortage of water resources are the important factors restricting the area's socioeconomic development. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for the Chinese Tian Shan (41.1814–45.9945∘ N, 77.3484–96.9989∘ E) from 1979 to 2016 based on a robust elevation correction framework. The data set was validated by 24 meteorological stations at a daily scale. Compared to original ERA-Interim temperature, the Nash–Sutcliffe efficiency coefficient increased from 0.90 to 0.94 for all test sites. Approximately 24 % of the root-mean-square error was reduced from 3.75 to 2.85 ∘C. A skill score based on the probability density function, which was used to validate the reliability of the new data set for capturing the distributions, improved from 0.86 to 0.91 for all test sites. The data set was able to capture the warming trends compared to observations at annual and seasonal scales, except for winter. We concluded that the new high-resolution data set is generally reliable for climate change investigation over the Chinese Tian Shan. However, the new data set is expected to be further validated based on more observations. This data set will be helpful for potential users to improve local climate monitoring, modeling, and environmental studies in the Chinese Tian Shan. The data set presented in this article is published in the Network Common Data Form (NetCDF) at https://doi.org/10.1594/PANGAEA.887700. The data set includes 288 nc files and one user guidance txt file.


2021 ◽  
Author(s):  
Marco Borga ◽  
Daniele Penna ◽  
Nasta Paolo ◽  
Comiti Francesco ◽  
Stefano Ferraris ◽  
...  

<p>The Italian initiative WATZON (WATer mixing in the critical ZONe) is a network of instrumented sites, bringing together six pre-existing long-term research observatories monitoring different compartments of the Critical Zone - the Earth's permeable near-surface layer from the tops of the trees to the bottom of the groundwater.  These observatories cover different climatic and physiographic characteristics over the country, providing information over a climate and eco-hydrologic transect connecting the Mediterranean to the Alps. With specific initial scientific questions, monitoring strategies, databases, and modeling activities, the WATZON observatories and sites is well representative of the heterogeneity of the critical zone and of the scientific communities studying it. Despite this diversity, all WATZON sites share a common eco-hydrologic monitoring and modelling program with three main objectives:</p><p>1) assessing the description of water mixing process across the critical zone by using integrated high-resolution isotopic, geophysical and hydrometeorological measurements from point to catchment scale, under different physiographic conditions and climate forcing;</p><p>2) testing water exchange mechanisms between subsurface reservoirs and vegetation, and assessing ecohydrological dynamics in different environments by coupling the high-resolution data set from different critical zone study sites of the initiative with advanced ecohydrological models at multiple spatial scales;</p><p>3) developing a process-based conceptual framework of ecohydrological processes in the critical zone to translate scientific knowledge into evidence to support policy and management decisions concerning water and land use in forested and agricultural ecosystems.</p><p>This work provides an overview of the WATZON network, its objectives, scientific questions, and data management, with a specific focus on existing initiatives for linking data and models based on WATZON data.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document