scholarly journals ENSO-Conditioned Weather Resampling Method for Seasonal Ensemble Streamflow Prediction

2016 ◽  
Author(s):  
Joost V. L. Beckers ◽  
Albrecht H. Weerts ◽  
Erik Tijdeman ◽  
Edwin Welles

Abstract. Oceanic-atmospheric climate modes, such as El Niño Southern Oscillation (ENSO), are known to affect the local streamflow regime in many rivers around the world. A method is proposed to incorporate climate mode information into the Ensemble Streamflow Prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the historical year and the index value at the time of forecast. In the second step, additional ensemble traces are generated by a stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of ensemble size in the first step and prevent degradation of forecast skill in sub-basins that are less affected by ENSO. The skill of the ENSO-conditioned ESP is evaluated over 50 years of seasonal reforecasts of streamflows in three sub-basins of the Columbia River basin in the Pacific Northwest. An improvement in forecast skill up to 10% is found.

2016 ◽  
Vol 20 (8) ◽  
pp. 3277-3287 ◽  
Author(s):  
Joost V. L. Beckers ◽  
Albrecht H. Weerts ◽  
Erik Tijdeman ◽  
Edwin Welles

Abstract. Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the local streamflow regime in many rivers around the world. A new method is proposed to incorporate climate mode information into the well-known ensemble streamflow prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the historical year and the index value at the time of forecast. In the second step, additional ensemble traces are generated by a stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of ensemble size in the first step and prevent degradation of skill at forecasting stations that are less affected by ENSO. The skill of the ENSO-conditioned ESP is evaluated over 50 years of seasonal hindcasts of streamflows at three test stations in the Columbia River basin in the US Pacific Northwest. An improvement in forecast skill of 5 to 10 % is found for two test stations. The streamflows at the third station are less affected by ENSO and no change in forecast skill is found here.


2017 ◽  
Vol 21 (7) ◽  
pp. 3915-3935 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Andrew W. Wood ◽  
Elizabeth Clark ◽  
Eric Rothwell ◽  
Martyn P. Clark ◽  
...  

Abstract. For much of the last century, forecasting centers around the world have offered seasonal streamflow predictions to support water management. Recent work suggests that the two major avenues to advance seasonal predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of climate information. This study investigates the marginal benefits of a variety of methods using IHCs and/or climate information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the US Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches – statistical regression against IHCs and model-based ensemble streamflow prediction (ESP) – and then systematically intercompare WSFs across a range of lead times. Additional methods include (i) statistical techniques using climate information either from standard indices or from climate reanalysis variables and (ii) several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone provides considerable improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies within a trace weighting framework. Lower complexity techniques were competitive with more complex methods, and the hierarchical expert regression approach introduced here (hierarchical ensemble streamflow prediction – HESP) provided a robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from this effort are (1) objective approaches supporting methodologically consistent hindcasts open the door to a broad range of beneficial forecasting strategies; (2) the use of climate predictors can add to the seasonal forecast skill available from IHCs; and (3) sample size limitations must be handled rigorously to avoid over-trained forecast solutions. Overall, the results suggest that despite a rich, long heritage of operational use, there remain a number of compelling opportunities to improve the skill and value of seasonal streamflow predictions.


2021 ◽  
Vol 118 (47) ◽  
pp. e2115599118
Author(s):  
Julien Boucharel ◽  
Rafael Almar ◽  
Elodie Kestenare ◽  
Fei-Fei Jin

Wind-generated waves are dominant drivers of coastal dynamics and vulnerability, which have considerable impacts on littoral ecosystems and socioeconomic activities. It is therefore paramount to improve coastal hazards predictions through the better understanding of connections between wave activity and climate variability. In the Pacific, the dominant climate mode is El Niño Southern Oscillation (ENSO), which has known a renaissance of scientific interest leading to great theoretical advances in the past decade. Yet studies on ENSO’s coastal impacts still rely on the oversimplified picture of the canonical dipole across the Pacific. Here, we consider the full ENSO variety to delineate its essential teleconnection pathways to tropical and extratropical storminess. These robust seasonally modulated relationships allow us to develop a mathematical model of coastal wave modulation essentially driven by ENSO’s complex temporal and spatial behavior. Accounting for this nonlinear climate control on Pan-Pacific wave activity leads to a much better characterization of waves’ seasonal to interannual variability (+25% in explained variance) and intensity of extremes (+60% for strong ENSO events), therefore paving the way for significantly more accurate forecasts than formerly possible with the previous baseline understanding of ENSO’s influence on coastal hazards.


2017 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Andrew W. Wood ◽  
Elizabeth Clark ◽  
Eric Rothwell ◽  
Martyn P. Clark ◽  
...  

Abstract. For much of the last century, forecasting centers around the world have offered seasonal streamflow predictions to support water management. Recent work suggests that the two major avenues to advance seasonal predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of climate information. This study investigates the marginal benefits of a variety of methods using IHC and/or climate information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the U.S. Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches – statistical regression against IHCs, and model-based ensemble streamflow prediction (ESP) – and then systematically inter-compare WSFs across a range of lead times. Additional methods include: (i) statistical techniques using climate information either from standard indices or from climate reanalysis variables; and (ii) several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone provides considerable improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies within a trace weighting framework. Lower complexity techniques were competitive with more complex methods, and the hierarchical expert regression approach introduced here (HESP) provided a robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from this effort are: (1) objective approaches supporting methodologically consistent hindcasts open the door to a broad range of beneficial forecasting strategies; (2) the use of climate predictors can add to the seasonal forecast skill available from IHCs; and (3) sample size limitations must be handled rigorously to avoid over-trained forecast solutions. Overall, the results suggest that despite a rich, long heritage of operational use, there remain a number of compelling opportunities to improve the skill and value of seasonal streamflow predictions.


2006 ◽  
Vol 45 (5) ◽  
pp. 653-673 ◽  
Author(s):  
Nathalie Voisin ◽  
Alan F. Hamlet ◽  
L. Phil Graham ◽  
David W. Pierce ◽  
Tim P. Barnett ◽  
...  

Abstract The benefits of potential electric power transfers between the Pacific Northwest (PNW) and California (CA) are evaluated using a linked set of hydrologic, reservoir, and power demand simulation models for the Columbia River and the Sacramento–San Joaquin reservoir systems. The models provide a framework for evaluating climate-related variations and long-range predictability of regional electric power demand, hydropower production, and the benefits of potential electric power transfers between the PNW and CA. The period of analysis is 1917–2002. The study results show that hydropower production and regional electric power demands in the PNW and CA are out of phase seasonally but that hydropower productions in the PNW and CA have strongly covaried on an annual basis in recent decades. Winter electric power demand and spring and annual hydropower production in the PNW are related to both El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) through variations in winter climate. Summer power demand in CA is related primarily to variations in the PDO in spring. Hydropower production in CA, despite recent covariation with the PNW, is not strongly related to ENSO variability overall. Primarily because of strong variations in supply in the PNW, potential hydropower transfers between the PNW and CA in spring and summer are shown to be correlated to ENSO and PDO, and the conditional probability distributions of these transfers are therefore predictable with long lead times. Such electric power transfers are estimated to have potential average annual benefits of $136 and $79 million for CA and the PNW, respectively, at the year-2000 regional demand level. These benefits are on average 11%–27% larger during cold ENSO/PDO events and are 16%–30% lower during warm ENSO/PDO events. Power transfers from the PNW to CA and hydropower production in CA are comparable in magnitude, on average.


2000 ◽  
Vol 2 (3) ◽  
pp. 163-182 ◽  
Author(s):  
Alan F. Hamlet ◽  
Dennis P. Lettenmaier

Ongoing research by the Climate Impacts Group at the University of Washington focuses on the use of recent advances in climate research to improve streamflow forecasts at seasonal-to-interannual, decadal, and longer time scales. Seasonal-to-interannual climate forecasting capabilities have advanced significantly in the past several years, primarily because of improvements in the understanding of, and an ability to forecast, El Niño/Southern Oscillation (ENSO) at seasonal/interannual time scales, and because of better understanding of longer time scale climate phenomena like the Pacific Decadal Oscillation (PDO). These phenomena exert strong controls on climate variability along the Pacific Coast of North America. The streamflow forecasting techniques we have developed for Pacific Northwest (PNW) rivers are based on climate forecasts that facilitate longer lead times (as much as a year) than the methods that are traditionally used for water management (maximum forecast lead times of a few months). At interannual time scales, the simplest of these techniques involves resampling meteorological data from previous years identified to be in similar climate categories as are forecast for the coming year. These data are then used to drive a hydrology model, which produces an ensemble of streamflow forecasts that are analogous to those that result from the well-known Extended Streamflow Prediction (ESP) method. This technique is a relatively simple, but effective, way of incorporating long-lead climate information into streamflow forecasts. It faithfully captures the history of observed climate variability. Its main limitation is that the sample size of observed events for some climate categories is small because of the length of the historic record. Furthermore, it is unable to capture important aspects of global change, which may interact with shorter term variations through changes in climate phenomena like ENSO and PDO. An alternative to the resampling method is to use nested regional climate models to produce the long-lead climate forecasts. Success using this approach has been hindered to some degree by the bias that is inherent in climate models, even when downscaled using regional nested modeling approaches. Adjustment or correction for this bias is central to the use of climate model output for hydrologic forecasting purposes. Approaches for dealing with climate model bias in the context of global and meso-scale are presently an area of active research. We illustrate an experimental application of the nested climate modeling approach for the Columbia River Basin, and compare it with the simpler resampling method. At much longer time scales, changes in Columbia River flows that might be associated with global climate change are of considerable concern in the PNW, given recent Endangered Species Act listing of certain salmonid species, and the increase in water demand that is expected to follow increases in human population in the region. Many of the same general challenges associated with the spatial downscaling of climate forecasts are present in these long-range investigations. Additional uncertainties exist in the ability of climate models to predict the effects of changing greenhouse gas concentrations. These uncertainties tend to dominate the results, and lead us to use relatively simplemethods of downscaling seasonal temperature and precipitation to interpret the implications of alternative climate scenarios on PNW water resources.


2011 ◽  
Vol 15 (11) ◽  
pp. 3529-3538 ◽  
Author(s):  
S. Shukla ◽  
D. P. Lettenmaier

Abstract. Seasonal hydrologic forecasts derive their skill from knowledge of initial hydrologic conditions and climate forecast skill associated with seasonal climate outlooks. Depending on the type of hydrological regime and the season, the relative contributions of initial hydrologic conditions and climate forecast skill to seasonal hydrologic forecast skill vary. We seek to quantify these contributions on a relative basis across the Conterminous United States. We constructed two experiments – Ensemble Streamflow Prediction and reverse-Ensemble Streamflow Prediction – to partition the contributions of the initial hydrologic conditions and climate forecast skill to overall forecast skill. In ensemble streamflow prediction (first experiment) hydrologic forecast skill is derived solely from knowledge of initial hydrologic conditions, whereas in reverse-ensemble streamflow prediction (second experiment), it is derived solely from atmospheric forcings (i.e. perfect climate forecast skill). Using the ratios of root mean square error in predicting cumulative runoff and mean monthly soil moisture of each experiment, we identify the variability of the relative contributions of the initial hydrologic conditions and climate forecast skill spatially throughout the year. We conclude that the initial hydrologic conditions generally have the strongest influence on the prediction of cumulative runoff and soil moisture at lead-1 (first month of the forecast period), beyond which climate forecast skill starts to have greater influence. Improvement in climate forecast skill alone will lead to better seasonal hydrologic forecast skill in most parts of the Northeastern and Southeastern US throughout the year and in the Western US mainly during fall and winter months; whereas improvement in knowledge of the initial hydrologic conditions can potentially improve skill most in the Western US during spring and summer months. We also observed that at a short lead time (i.e. lead-1) contribution of the initial hydrologic conditions in soil moisture forecasts is more extensive than in cumulative runoff forecasts across the Conterminous US.


Sign in / Sign up

Export Citation Format

Share Document