scholarly journals Review of hess-2017-415: Evaporation suppression and energy balance of water reservoirs covered with self-assembling floating elements

2017 ◽  
Author(s):  
Anonymous
2018 ◽  
Vol 22 (7) ◽  
pp. 4015-4032 ◽  
Author(s):  
Milad Aminzadeh ◽  
Peter Lehmann ◽  
Dani Or

Abstract. The growing pressure on natural freshwater resources and the projected climate variability are expected to increase the need for water storage during rainy periods. Evaporative losses present a challenge for the efficiency of water storage in reservoirs, especially in arid regions with chronic water shortages. Among the available methods for suppressing evaporative losses, self-assembling floating elements offer a simple and scalable solution, especially for small reservoirs. The use of floating elements has often been empirically based; we thus seek a framework for systematic consideration of floating element properties, local climate and reservoir conditions to better predict evaporative loss, energy balance and heat fluxes from covered water reservoirs. We linked the energy balance of the water column with energy considerations of the floating elements. Results suggest significant suppression of evaporative losses from covered reservoirs in which incoming radiative energy is partitioned to sensible and long wave fluxes that reduce latent heat flux and thus increase the Bowen ratio over covered water reservoirs. Model findings were consistent with laboratory-scale observations using an uncovered and covered small basin. The study offers a physically based framework for testing design scenarios in terms of evaporation suppression efficiency for various climatic conditions; it hence strengthens the science in the basis of this important water resource conservation strategy.


2017 ◽  
Author(s):  
Milad Aminzadeh ◽  
Peter Lehmann ◽  
Dani Or

Abstract. The growing pressure on natural fresh water resources and projected climate variability would expand the need for water storage during rainy periods. Evaporative losses present a challenge to efficient water storage reservoirs, especially in arid regions with chronic water shortages. Among the various methods for suppressing evaporative losses, the use of self-assembling floating elements offers a simple and scalable solution especially for small reservoirs. The use of floating elements is not new, yet the science behind the design and the resulting performance including other effects on the water body remain empirical. We propose a systematic approach for modeling the energy balance and fluxes from covered water surfaces considering element geometry, radiative properties and local conditions. The water energy balance equation was linked to the energy balance of floating discs on the surface of reservoir to consider the effect of surface coverage and cover properties on radiative energy storage within the water body and surface heat fluxes. The modeling results demonstrated significant drop in evaporative losses from covered reservoirs where incoming radiative flux is primarily intercepted by the cover surface and released into the atmosphere in form of long wave radiation and sensible heat fluxes yielding much higher Bowen ratio over covered relative to uncovered water reservoirs. The theoretical approach provides a scientific basis for an important water resource protection strategy and a predictive framework for design purposes.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


2020 ◽  
Author(s):  
Will R Henderson ◽  
Danielle E. Fagnani ◽  
Yu Zhu ◽  
Guancen Liu ◽  
Ronald K. Castellano

Sign in / Sign up

Export Citation Format

Share Document