scholarly journals A Unique Vadose Zone Model for Shallow Aquifers: the Hetao Irrigation District, China

2018 ◽  
Author(s):  
Zhongyi Liu ◽  
Xingwang Wang ◽  
Zailin Huo ◽  
Tammo Siert Steenhuis

Abstract. Rapid population growth is increasing pressure on the world water resources. Agriculture will require crops to be grown with less water. This is especially the case for the closed Yellow River basin necessitating a better understanding of the fate of irrigation water in the soil. In this manuscript, we report on a field experiment and develop a physical based model for the shallow groundwater in the Hetao irrigation district in Inner Mongolia, in the arid middle reaches of the Yellow River. Unlike other approaches, this model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and not by a limiting soil conductivity. The field experiment was carried out in 2016 and 2017. Daily moisture contents at 5 depths in the top 90 cm and groundwater table depths were measured in two fields with a corn crop. The data collected were used for model calibration and validation. The calibration and validation results show that the model-simulated soil moisture and groundwater depth fitted well. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.

2019 ◽  
Vol 23 (7) ◽  
pp. 3097-3115 ◽  
Author(s):  
Zhongyi Liu ◽  
Xingwang Wang ◽  
Zailin Huo ◽  
Tammo Siert Steenhuis

Abstract. Rapid population growth is increasing pressure on the world water resources. Agriculture will require crops to be grown with less water. This is especially the case for the closed Yellow River basin, necessitating a better understanding of the fate of irrigation water in the soil. In this paper, we report on a field experiment and develop a physically based model for the shallow groundwater in the Hetao irrigation district in Inner Mongolia, in the arid middle reaches of the Yellow River. Unlike other approaches, this model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and not by a limiting soil conductivity. The field experiment was carried out in 2016 and 2017. Daily moisture contents at five depths in the top 90 cm and groundwater table depths were measured in two fields with a corn crop. The data collected were used for model calibration and validation. The calibration and validation results show that the model-simulated soil moisture and groundwater depth fitted well. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.


2020 ◽  
Author(s):  
Zhongyi Liu ◽  
Zailin Huo ◽  
Chaozi Wang ◽  
Limin Zhang ◽  
Xianghao Wang ◽  
...  

Abstract. Optimum performance of irrigated crops in regions with shallow saline groundwater requires a careful balance between application of irrigation water and upward movement of salinity from the groundwater. Few field validated surrogate models are available to aid in the management of irrigation water under shallow groundwater conditions. The objective of this research is to develop a model that can aid in the management using a minimum of input data that is field validated. In this paper a 2-year field experiment was carried out in the Hetao irrigation district in Inner Mongolia, China and a physically based integrated surrogate model for arid irrigated areas with shallow groundwater was developed and validated with the collected field data. The integrated model that links crop growth with available water and salinity in the vadose zone is called Evaluation of the Performance of Irrigated Crops and Soils (EPICS). EPICS recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and thus not by a limiting hydraulic conductivity. In the field experiment, soil moisture contents and soil salt conductivity at 5 depths in the top 100 cm, groundwater depth, crop height, and leaf area index were measured in 2017 and 2018. The field results were used for calibration and validation of EPICS. Simulated and observed data fitted generally well during both calibration and validation. The EPICS model that can predict crop growth, soil water, groundwater depth and soil salinity can aid in optimizing water management in irrigation districts with shallow aquifers.


2020 ◽  
Vol 24 (8) ◽  
pp. 4213-4237 ◽  
Author(s):  
Zhongyi Liu ◽  
Zailin Huo ◽  
Chaozi Wang ◽  
Limin Zhang ◽  
Xianghao Wang ◽  
...  

Abstract. Optimum management of irrigated crops in regions with shallow saline groundwater requires a careful balance between application of irrigation water and upward movement of salinity from the groundwater. Few field-validated surrogate models are available to aid in the management of irrigation water under shallow groundwater conditions. The objective of this research is to develop a model that can aid in the management using a minimum of input data that are field validated. In this paper a 2-year field experiment was carried out in the Hetao irrigation district in Inner Mongolia, China, and a physically based integrated surrogate model for arid irrigated areas with shallow groundwater was developed and validated with the collected field data. The integrated model that links crop growth with available water and salinity in the vadose zone is called Evaluation of the Performance of Irrigated Crops and Soils (EPICS). EPICS recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and thus not by a limiting hydraulic conductivity. In the field experiment, soil moisture contents and soil salt conductivity at five depths in the top 100 cm, groundwater depth, crop height, and leaf area index were measured in 2017 and 2018. The field results were used for calibration and validation of EPICS. Simulated and observed data fitted generally well during both calibration and validation. The EPICS model that can predict crop growth, soil water, groundwater depth, and soil salinity can aid in optimizing water management in irrigation districts with shallow aquifers.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 11-18 ◽  
Author(s):  
A. Facchi ◽  
C. Gandolfi ◽  
B. Ortuani ◽  
D. Maggi

The work presents the results of a comprehensive modelling study of surface and groundwater resources in the Muzza–Bassa Lodigiana irrigation district, in Northern Italy. It assesses the impact of changes in land use and irrigation water availability on the distribution of crop water consumption in space and time, as well as on the groundwater resources. A distributed, integrated surface water-groundwater simulation system was implemented and applied to the study area. The system is based on the coupling of a conceptual vadose zone model with the groundwater model MODFLOW. To assess the impact of land use and irrigation water availability on water deficit for crops as well as on groundwater system in the area, a number of management scenarios were identified and compared with a base scenario, reflecting the present conditions. Changes in land use may alter significantly both total crop water requirement and aquifer recharge. Water supply is sufficient to meet demand under present conditions and, from the crop water use viewpoint, a reduction of water availability has a positive effect on the overall irrigation system efficiency; however, evapotranspiration deficit increases, concentrated in July and August, when it may be critical for maize crops.


Sign in / Sign up

Export Citation Format

Share Document