scholarly journals Review of "Practical experience and framework for sensitivity analysis of hydrological models: six methods, three models, three criteria"

2018 ◽  
Author(s):  
William Becker
Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1062 ◽  
Author(s):  
Anqi Wang ◽  
Dimitri P. Solomatine

Currently, practically no modeling study is expected to be carried out without some form of Sensitivity Analysis (SA). At the same time, there is a large number of various methods and it is not always easy for practitioners to choose one. The aim of this paper is to briefly review main classes of SA methods, and to present the results of the practical comparative analysis of applying them. Six different global SA methods: Sobol, eFAST (extended Fourier Amplitude Sensitivity Test), Morris, LH-OAT, RSA (Regionalized Sensitivity Analysis), and PAWN are tested on three conceptual rainfall-runoff models with varying complexity: (GR4J, Hymod, and HBV) applied to the case study of Bagmati basin (Nepal). The methods are compared with respect to effectiveness, efficiency, and convergence. A practical framework of selecting and using the SA methods is presented. The result shows that, first of all, all the six SA methods are effective. Morris and LH-OAT methods are the most efficient methods in computing SI and ranking. eFAST performs better than Sobol, and thus it can be seen as its viable alternative for Sobol. PAWN and RSA methods have issues of instability, which we think are due to the ways Cumulative Distribution Functions (CDFs) are built, and using Kolmogorov–Smirnov statistics to compute Sensitivity Indices. All the methods require sufficient number of runs to reach convergence. Difference in efficiency of different methods is an inevitable consequence of the differences in the underlying principles. For SA of hydrological models, it is recommended to apply the presented practical framework assuming the use of several methods, and to explicitly take into account the constraints of effectiveness, efficiency (including convergence), ease of use, and availability of software.


2018 ◽  
Author(s):  
Anqi Wang ◽  
Dimitri P. Solomatine

Abstract. Sensitivity Analysis (SA) and Uncertainty Analysis (UA) are important steps for better understanding and evaluation of hydrological models. The aim of this paper is to briefly review main classes of SA methods, and to presents the results of the practical comparative analysis of applying them. Six different global SA methods: Sobol, eFAST, Morris, LH-OAT, RSA and PAWN are tested on three conceptual rainfall-runoff models with varying complexity: (GR4J, Hymod and HBV) applied to the case study of Bagmati basin (Nepal), and also initially tested on the case of Dapoling-Wangjiaba catchment in China. The methods are compared with respect to effectiveness, efficiency and convergence. A practical framework of selecting and using the SA methods is presented. The result shows that, first of all, all the six SA methods are effective. Morris and LH-OAT methods are the most efficient methods in computing SI and ranking. eFAST performs better than Sobol, thus can be seen as its viable alternative for Sobol. PAWN and RSA methods have issues of instability which we think are due to the ways CDFs are built, and using Kolmogorov-Smirnov statistics to compute Sensitivity Indices. All the methods require sufficient number of runs to reach convergence. Difference in efficiency of different methods is an inevitable consequence of the differences in the underlying principles. For SA of hydrological models, it is recommended to apply the presented practical framework assuming the use of several methods, and to explicitly take into account the constraints of effectiveness, efficiency (including convergence), ease of use, as well as availability of software.


Author(s):  
Rodric Mérimé Nonki ◽  
André Lenouo ◽  
Christopher J. Lennard ◽  
Raphael M. Tshimanga ◽  
Clément Tchawoua

AbstractPotential Evapotranspiration (PET) plays a crucial role in water management, including irrigation systems design and management. It is an essential input to hydrological models. Direct measurement of PET is difficult, time-consuming and costly, therefore a number of different methods are used to compute this variable. This study compares the two sensitivity analysis approaches generally used for PET impact assessment on hydrological model performance. We conducted the study in the Upper Benue River Basin (UBRB) located in northern Cameroon using two lumped-conceptual rainfall-runoff models and nineteen PET estimation methods. A Monte-Carlo procedure was implemented to calibrate the hydrological models for each PET input while considering similar objective functions. Although there were notable differences between PET estimation methods, the hydrological models performance was satisfactory for each PET input in the calibration and validation periods. The optimized model parameters were significantly affected by the PET-inputs, especially the parameter responsible to transform PET into actual ET. The hydrological models performance was insensitive to the PET input using a dynamic sensitivity approach, while he was significantly affected using a static sensitivity approach. This means that the over-or under-estimation of PET is compensated by the model parameters during the model recalibration. The model performance was insensitive to the rescaling PET input for both dynamic and static sensitivities approaches. These results demonstrate that the effect of PET input to model performance is necessarily dependent on the sensitivity analysis approach used and suggest that the dynamic approach is more effective for hydrological modeling perspectives.


2011 ◽  
Vol 411 (1-2) ◽  
pp. 66-76 ◽  
Author(s):  
Raji Pushpalatha ◽  
Charles Perrin ◽  
Nicolas Le Moine ◽  
Thibault Mathevet ◽  
Vazken Andréassian

2021 ◽  
Author(s):  
Irene Di Cicco ◽  
Carlo Giudicianni ◽  
Armando Di Nardo ◽  
Roberto Greco

<p>Rapid human-induced changes, such as climate change, population growth and rapid urbanization, are putting enormous stress on water resources. An accurate estimate of available water resources is a prerequisite for sustainable water resources planning and management. For gauged basins, historical records of hydrological observations are available, but for ungauged basins, the assessment of water availability is a challenging task. Therefore, the major focus of studies in ungauged basins is the development of appropriate tools that can accurately quantify hydrologic responses under various land use and climatic conditions. The reduction of the number of unknown parameters to be estimated is a key aspect in the development of hydrological models for ungauged basins.</p><p>This work is part of these issues and proposes an approach to reduce the complexity of hydrological models that include substantial uncertainties about the input data, initial and boundary conditions, model structure and parameters, owing to lack of data (i.e. for ungauged basins) and poor knowledge of hydrological response mechanisms. The case study of a basin of the District of Licola, located in the territory of the municipality of Giugliano, a city near Naples (southern Italy) is analyzed. Originally devoted to agriculture and grazing, it has been affected in the last decades by intense urbanization, which caused an increase in the impermeability of the soil cover. The increase in residential, commercial and production buildings has changed the functioning of the drainage network canals, compared to the original conditions, causing an increase in the frequency of flooding in the area. The semi-distributed hydrological model SWMM is adopted, which allows the subdivision of the basin in sub-basins according to land use and soil data.</p><p>Sensitivity Analysis (SA) is an effective approach to model simplification, providing an assessment of how much each input / parameter contributes to the output uncertainty. In general, SA is an essential part of model development, reducing uncertainties that have negative effects on the accuracy and reliability of simulated results. Specifically, in this study the SA is carried out with a method based on the decomposition of the variance of the peak flow and runoff volume, to quantitatively evaluate the contributions of single uncertain inputs/parameters that characterize the surface runoff with respect to different rainfall events, for both pervious and impervious areas. To this aim, the Fourier Amplitude Sensitivity Test (FAST) is implemented. This method allows quantifying not only the “main effect” of variance, but also provides the Total Sensitivity Indices (TSI), defined as the sum of all the sensitivity indices for each parameter (including the effects of the interaction with other uncertain parameters).</p><p>The research objectives aims at: (i) increased understanding of the relationships between input and output variables in a complex hydrological system; (ii) reduction of model uncertainty, through the identification of input parameters mostly contributing to output variability and should therefore be the focus of sensitivity analysis; (iii) model simplification, fixing  the values of input parameters that have little effect on the output, and identifying and removing redundant parts of the model structure.</p>


2021 ◽  
Author(s):  
Robert Reinecke ◽  
Francesca Pianosi ◽  
Thorsten Wagener

<div> <p>Global hydrologic models have become an important research tool in assessing global water resources and hydrologic hazards in a changing environment, and for improving our understanding of how the water cycle is affected by climatic changes worldwide. These complex models have been developed over more than 20 years by multiple research groups, and valuable efforts like ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) contribute to our growing understanding of model uncertainties and differences. However, due to their complexity and vast data outputs, they remain a Blackbox to certain extents. Especially for processes that are poorly constrained by available observations – like groundwater recharge – model results vary largely, and it is unclear what processes dominate where and when. With the inclusion of even more sophisticated implementations e.g., coupled global gradient-based groundwater simulations, it is getting more and more challenging to understand and attribute these models' results. </p> </div><div> <p>In this talk, we argue that we need to intensify the efforts in investigating uncertainties within these models, including where they originate and how they propagate. We need to carefully and extensively examine where different processes drive the model results by applying state of the art sensitivity analysis methods. To this end, we discuss development needs and describe pathways to foster the application of sensitivity analysis methods to global hydrological models.     </p> </div>


2013 ◽  
Vol 16 (2) ◽  
pp. 407-424 ◽  
Author(s):  
C. W. Dawson ◽  
N. J. Mount ◽  
R. J. Abrahart ◽  
J. Louis

This paper addresses the difficult question of how to perform meaningful comparisons between neural network-based hydrological models and alternative modelling approaches. Standard, goodness-of-fit metric approaches are limited since they only assess numerical performance and not physical legitimacy of the means by which output is achieved. Consequently, the potential for general application or catchment transfer of such models is seldom understood. This paper presents a partial derivative, relative sensitivity analysis method as a consistent means by which the physical legitimacy of models can be evaluated. It is used to compare the behaviour and physical rationality of a generalised linear model and two neural network models for predicting median flood magnitude in rural catchments. The different models perform similarly in terms of goodness-of-fit statistics, but behave quite distinctly when the relative sensitivities of their inputs are evaluated. The neural solutions are seen to offer an encouraging degree of physical legitimacy in their behaviour, over that of a generalised linear modelling counterpart, particularly when overfitting is constrained. This indicates that neural models offer preferable solutions for transfer into ungauged catchments. Thus, the importance of understanding both model performance and physical legitimacy when comparing neural models with alternative modelling approaches is demonstrated.


2018 ◽  
Vol 22 (1) ◽  
pp. 203-220 ◽  
Author(s):  
Simon Höllering ◽  
Jan Wienhöfer ◽  
Jürgen Ihringer ◽  
Luis Samaniego ◽  
Erwin Zehe

Abstract. Diagnostics of hydrological models are pivotal for a better understanding of catchment functioning, and the analysis of dominating model parameters plays a key role for region-specific calibration or parameter transfer. A major challenge in the analysis of parameter sensitivity is the assessment of both temporal and spatial differences of parameter influences on simulated streamflow response. We present a methodological approach for global sensitivity analysis of hydrological models. The multilevel approach is geared towards complementary forms of streamflow response targets, and combines sensitivity analysis directed to hydrological fingerprints, i.e. temporally independent and temporally aggregated characteristics of streamflow (INDPAS), with the conventional analysis of the temporal dynamics of parameter sensitivity (TEDPAS). The approach was tested in 14 mesoscale headwater catchments of the Ruhr River in western Germany using simulations with the spatially distributed hydrological model mHM. The multilevel analysis with diverse response characteristics allowed us to pinpoint parameter sensitivity patterns much more clearly as compared to using TEDPAS alone. It was not only possible to identify two dominating parameters, for soil moisture dynamics and evapotranspiration, but we could also disentangle the role of these and other parameters with reference to different streamflow characteristics. The combination of TEDPAS and INDPAS further allowed us to detect regional differences in parameter sensitivity and in simulated hydrological functioning, despite the rather small differences in the hydroclimatic and topographic setting of the Ruhr headwaters.


Sign in / Sign up

Export Citation Format

Share Document