scholarly journals Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework

2017 ◽  
Vol 21 (3) ◽  
pp. 1515-1526 ◽  
Author(s):  
Tingting Ning ◽  
Zhi Li ◽  
Wenzhao Liu

Abstract. Within the Budyko framework, the controlling parameter (ω in the Fu equation) is widely considered to represent landscape conditions in terms of vegetation coverage (M); however, some qualitative studies have concluded that climate seasonality (S) should be incorporated in ω. Here, we discuss the relationship between ω, M, and S, and further develop an empirical equation so that the contributions from M to actual annual evapotranspiration (ET) can be determined more accurately. Taking 13 catchments in the Loess Plateau as examples, ω was found to be well correlated with M and S. The developed empirical formula for ω calculations at the annual scale performed well for estimating ET by the cross-validation approach. By combining the Budyko framework with the semi-empirical formula, the contributions of changes in ω to ET variations were further decomposed as those of M and S. Results showed that the contributions of S to ET changes ranged from 0.1 to 74.8 % (absolute values). Therefore, the impacts of climate seasonality on ET cannot be ignored, otherwise the contribution of M to ET changes will be estimated with a large error. The developed empirical formula between ω, M, and S provides an effective method to separate the contributions of M and S to ET changes.

2016 ◽  
Author(s):  
Tingting Ning ◽  
Zhi Li ◽  
Wenzhao Liu

Abstract. Within the Budyko framework, the controlling parameter (ω in the Fu equation) is widely considered to represent landscape conditions in terms of vegetation coverage (M); however, some qualitative studies have concluded that climate seasonality (S) should be incorporated in ω. Here, we discuss the relationship between ω, M, and S, and further develop an empirical equation so that the contributions from M to actual evapotranspiration (ET) can be determined more accurately. Taking 13 catchments in the Loess Plateau as examples, ω was found to be well correlated with M and S. The developed empirical formula for ω calculations at the annual scale performed well for estimating ET by the cross-validation approach. By combining the Budyko framework with the semi-empirical formula, the contributions of changes in ω to ET variations were further decomposed as those of M and S. Results showed that the contributions of S to ET changes ranged from 0.1 % to 65.6 % (absolute values); therefore, the impacts of climate seasonality on ET cannot be ignored. Otherwise, the contribution of M to ET changes will be estimated with a large error. The developed empirical formula between ω, M, and S provides an effective method to separate the contributions of M and S to ET changes.


2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


Author(s):  
Yang Li ◽  
Yaochen Qin ◽  
Liqun Ma ◽  
Ziwu Pan

Purpose The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau. Design/methodology/approach The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described. Findings The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November. Originality/value This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.


Author(s):  
Xiaofeng WANG ◽  
Feiyan XIAO ◽  
Xiaoming FENG ◽  
Bojie FU ◽  
Zixiang ZHOU ◽  
...  

ABSTRACTSoil conservation on the Loess Plateau is important not only for local residents but also for reducing sediment downstream in the Yellow River. In this paper, we report a decrease in soil erosion from 2000 to 2010 as a result of the ‘Grain for Green' (GFG) Project. By using the Revised Universal Soil Loss Equation and data on land cover, climate and sediment yield, we found that soil erosion decreased from 6579.55tkm–2yr–1 in 2000 to 1986.66tkm–2yr–1 in 2010. During this period, there was a major land cover change from farmland to grassland in response to the GFG. The area of low vegetation coverage with severe erosion decreased dramatically, whereas the area of high vegetation coverage with slight erosion increased. Our study demonstrates that the reduction in soil erosion on the Loess Plateau contributed to the decrease in the sediment concentration in the Yellow River.


Sign in / Sign up

Export Citation Format

Share Document