scholarly journals Continuous cover forestry: possible implications for surface water acidification in the UK uplands

2004 ◽  
Vol 8 (3) ◽  
pp. 306-313 ◽  
Author(s):  
B. Reynolds

Abstract. The effects of widespread conifer afforestation on the acidity of lakes and streams in the acid sensitive uplands of the UK has been researched extensively and has contributed to the development and implementation of national forest management guidelines (e.g. Forest and Water Guidelines; Forestry Commission, 1993). However, a recent policy document (Woodlands for Wales; National Assembly for Wales, 2000) has proposed a major shift in the management of 50% of the Forestry Commission estate in Wales from the current system of patch clearfelling to Continuous Cover Forestry (CCF). This scale of change is without precedent in the UK; no studies in the UK forest environment have examined the likely environmental impacts of CCF. However, the wealth of environmental data from studies of UK forests managed by patch clearfelling enables an assessment of the impact of a change to CCF on three issues of particular relevance to surface water acidification in the uplands; forest harvesting, soil base cation depletion and atmospheric pollutant deposition. Whilst there is uncertainty as to how even-aged stands will be transformed to CCF in the UK, guiding principles for CCF on acidic and acid sensitive sites should focus on those aspects of management which minimise nitrate leaching, encourage base cation retention within the soil-plant system and enhance base cation inputs from external (atmospheric) and internal sources (weathering). CCF may provide opportunities to achieve this by reducing the scale of clearfelling, increasing species diversity, changing the structure of plantation forests and maintaining uninterrupted woodland cover. Keywords: acidification, forestry, continuous cover forestry, clearfelling

1995 ◽  
Vol 85 (2) ◽  
pp. 565-570 ◽  
Author(s):  
A. Jenkins ◽  
G. Campbell ◽  
M. Renshaw ◽  
D. Boorman ◽  
J. Stedman ◽  
...  

2016 ◽  
Vol 21 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Naoyuki Yamashita ◽  
Hiroyuki Sase ◽  
Tsuyoshi Ohizumi ◽  
Junichi Kurokawa ◽  
Toshimasa Ohara ◽  
...  

2013 ◽  
Vol 21 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Jennifer B. Korosi ◽  
Brian K. Ginn ◽  
Brian F. Cumming ◽  
John P. Smol

Freshwater lakes in the Canadian Maritime provinces have been detrimentally influenced by multiple, often synergistic, anthropogenically-sourced environmental stressors. These include surface-water acidification (and a subsequent decrease in calcium loading to lakes); increased nutrient inputs; watershed development; invasive species; and climate change. While detailed studies of these stressors are often hindered by a lack of predisturbance monitoring information; in many cases, these missing data can be determined using paleolimnological techniques, along with inferences on the full extent of environmental change (and natural variability), the timing of changes, and linkages to probable causes for change. As freshwater resources are important for fisheries, agriculture, municipal drinking water, and recreational activities, among others, understanding long-term ecological changes in response to anthropogenic stressors is critical. To assess the impacts of the major water-quality issues facing freshwater resources in this ecologically significant region, a large number of paleolimnological studies have recently been conducted in Nova Scotia and southern New Brunswick. These studies showed that several lakes in southwestern Nova Scotia, especially those in Kejimkujik National Park, have undergone surface-water acidification (mean decline of 0.5 pH units) in response to local-source SO2 emissions and the long-range transport of airborne pollutants. There has been no measureable chemical or biological recovery since emission restrictions were enacted. Lakewater calcium (Ca) decline, a recently recognized environmental stressor that is inextricably linked to acidification, has negatively affected the keystone zooplankter Daphnia in at least two lakes in Nova Scotia (and likely more), with critical implications for aquatic food webs. A consistent pattern of increasing planktonic diatoms and scaled chrysophytes was observed in lakes across Nova Scotia and New Brunswick, suggesting that the strength and duration of lake thermal stratification has increased since pre-industrial times in response to warming temperatures (∼1.5 °C since 1870). These include three lakes near Bridgewater, Nova Scotia, that are among the last known habitat for critically endangered Atlantic whitefish (Coregonus huntsmani). Overall, these studies suggest that aquatic ecosystems in the Maritime Provinces are being affected by multiple anthropogenic stressors and paleolimnology can be effective for inferring the ecological implications of these stressors.


1998 ◽  
Vol 2 (4) ◽  
pp. 543-554 ◽  
Author(s):  
C. D. Evans ◽  
A. Jenkins ◽  
R. C. Helliwell ◽  
R. Ferrier

Abstract. A dynamic, process-based model of surface water acidification, MAGIC, has been applied to over a thousand sites across the UK. The model is calibrated to surface water samples collected during a survey for the Critical Loads programme, and utilises the best available and consistent estimates of soil physical and chemical properties, rainfall and runoff volumes, and deposition chemistry. A total of 698 sites were calibrated successfully. At these sites, surface water chemistry was reconstructed from 1850 to the present day, and forecast to 2050 based on future decreases in sulphur (S) deposition in response to the Second S Protocol. Model outputs capture distinct regional patterns of acidification and recovery. the most acidic present-day conditions are found in acid-sensitive regions of Northern England (the Pennines, Lake District and North York Moors). Although a significant proportion of sites in these areas failed to calibrate, those that did are predicted to have experienced severe historic decreases in acidic neutralising capacity (ANC) in response to high levels of acidic deposition. The model also indicates significant acidification in the moderate deposition areas of Wales and Galloway, whereas in the low deposition region of northern Scotland, acidification has been minor even in areas of acid-sensitive geology. ANC is forecast to recover at virtually all sites, with the greatest recovery predicted for areas currently subject to high deposition. The model indicates that the Second S Protocol, however, will not be sufficient to produce full recovery, with average ANC increases to 2050 counteracting just 27% of the simulated decline from 1850 to present day. Acidic conditions (ANC < 0) are predicted to persist until 2050 at a significant number of sites in Northern England, Wales and Galloway.


Improvements in techniques of lake-sediment analysis over the last two decades have enabled palaeolimnologists to reconstruct changes in water acidity and atmospheric contamination with high resolution. In the Surface Water Acidification Project (SWAP) Palaeolimnology Programme these techniques have been used to trace the history of a range of specially selected study sites and to evaluate alternative causes for lake acidification. At the same time further improvements in some of the techniques, especially diatom analysis, have been made.


2003 ◽  
Vol 7 (4) ◽  
pp. 456-466 ◽  
Author(s):  
R. C. Helliwell ◽  
A. Jenkins ◽  
R. C. Ferrier ◽  
B. J. Cosby

Abstract. Abstract: The MAGIC (Model of Acidification of Groundwaters in Catchments) model has been calibrated to three acid sensitive regions in the UK: Galloway, the South Pennines and Wales. These calibrations use the best available data for surface water, soil and deposition, from several UK data bases and regional sampling programmes. The model is capable of reproducing observed base cation and acid anion concentrations as reflected by a close match between observed and simulated acid neutralising capacity (ANC). Predictions to 2016 under currently agreed emission reductions, the Gothenburg Protocol, show that ANC greater than zero will be achieved at 100%, 86% and 100% of sites in Galloway, the Pennines and Wales, respectively. This indicates the potential for biological recovery and a return to ‘good status’ although chemical conditions remain some way from simulated pre-acidification conditions. In the longer term, beyond 2036 (20 years after compliance with the Gothenburg protocol), the model indicates that increased N leakage to surface waters may cause deterioration in the chemical status. Keywords: recovery, acidification, modelling, upland UK, ecology


Sign in / Sign up

Export Citation Format

Share Document