scholarly journals An effective depression filling algorithm for DEM-based 2-dimensional surface flow modelling

2012 ◽  
Vol 9 (9) ◽  
pp. 10011-10051
Author(s):  
D. Zhu ◽  
Q. Ren ◽  
Y. Xuan ◽  
Y. Chen ◽  
I. Cluckie

Abstract. The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation to described by grid based digital elevation models (DEMs). However, a serious problem of this approach may arise when using a 2-D surface flow model which exchanges flows through adjacent cells, or conventional rink removal algorithms which also allow flow to be exchanged along diagonal directions, due to the existence of artificial depression in DEMs. This study firstly analyses the two types of depressions in DEMs and reviews the current depression filling algorithms with a medium sized basin in South-East England, the Upper Medway Catchment (220 km2) used to demonstrate the depression issue in 2-D surface runoff simulation by MIKE SHE with different DEM resolutions (50 m, 100 m and 200 m). An alternative depression-filling algorithm for 2-D overland flow modelling is developed and evaluated by comparing the simulated flows at the outlet of the catchment. This result suggests that the depression estimates at different grid resolution of DEM highly influences overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue when comparing simulations in sink-dominated and sink-free digital elevation models, especially for depressions in relatively flat areas on digital land surface models.

2013 ◽  
Vol 17 (2) ◽  
pp. 495-505 ◽  
Author(s):  
D. Zhu ◽  
Q. Ren ◽  
Y. Xuan ◽  
Y. Chen ◽  
I. D. Cluckie

Abstract. The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation described by grid based digital elevation models (DEMs). However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial depression in DEMs. In this paper, we propose an effective method for filling artificial depressions in DEM so that the problem can be addressed. We firstly analyse two types of depressions in DEMs and demonstrate the issues caused by the current depression filling algorithms using the surface flow simulations from the MIKE SHE model built for a medium-sized basin in Southeast England. The proposed depression-filling algorithm for 2-D overland flow modelling is applied and evaluated by comparing the simulated flows at the outlet of the catchment represented by DEMs at various resolutions (50 m, 100 m and 200 m). The results suggest that the existence of depressions in DEMs can substantially influence the overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue based upon the comparison of simulations for sink-dominated and sink-free DEMs, especially in the areas with relatively flat topography.


2011 ◽  
Vol 15 (11) ◽  
pp. 3275-3291 ◽  
Author(s):  
S. Gharari ◽  
M. Hrachowitz ◽  
F. Fenicia ◽  
H. H. G. Savenije

Abstract. This paper presents a detailed performance and sensitivity analysis of a recently developed hydrological landscape classification method based on dominant runoff mechanisms. Three landscape classes are distinguished: wetland, hillslope and plateau, corresponding to three dominant hydrological regimes: saturation excess overland flow, storage excess sub-surface flow, and deep percolation. Topography, geology and land use hold the key to identifying these landscapes. The height above the nearest drainage (HAND) and the surface slope, which can be easily obtained from a digital elevation model, appear to be the dominant topographical controls for hydrological classification. In this paper several indicators for classification are tested as well as their sensitivity to scale and resolution of observed points (sample size). The best results are obtained by the simple use of HAND and slope. The results obtained compared well with the topographical wetness index. The HAND based landscape classification appears to be an efficient method to ''read the landscape'' on the basis of which conceptual models can be developed.


2008 ◽  
Vol 15 (6) ◽  
pp. 999-1011 ◽  
Author(s):  
J. L. M. P. de Lima ◽  
C. S. Souza ◽  
V. P. Singh

Abstract. Due to the combined effect of wind and rain, the importance of storm movement to surface flow has long been recognized, at scales ranging from headwater scales to large basins. This study presents the results of laboratory experiments designed to investigate the influence of moving rainfall storms on the dynamics of sediment transport by surface runoff. Experiments were carried out, using a rain simulator and a soil flume. The movement of rainfall was generated by moving the rain simulator at a constant speed in the upstream and downstream directions along the flume. The main objective of the study was to characterize, in laboratory conditions, the distribution of sediment grain-size transported by rainfall-induced overland flow and its temporal evolution. Grain-size distribution of the eroded material is governed by the capacity of flow that transports sediments. Granulometric curves were constructed using conventional hand sieving and a laser diffraction particle size analyser (material below 0.250 mm) for overland flow and sediment deliveries collected at the flume outlet. Surface slope was set at 2%, 7% and 14%. Rainstorms were moved with a constant speed, upslope and downslope, along the flume or were kept static. The results of laboratory experiments show that storm movement, affecting the spatial and temporal distribution of rainfall, has a marked influence on the grain-size characteristics of sediments transported by overland flow. The downstream-moving rainfall storms have higher stream power than do other storm types.


2011 ◽  
Vol 8 (3) ◽  
pp. 4381-4425
Author(s):  
S. Gharari ◽  
F. Fenicia ◽  
M. Hrachowitz ◽  
H. H. G. Savenije

Abstract. This paper presents a new type of hydrological landscape classification based on dominant runoff mechanisms. Three landscape classes are distinguished: wetland, hillslope and plateau, corresponding to three dominant hydrological regimes: saturation excess overland flow, storage excess sub-surface flow, and deep percolation. Topography, geology and land use hold the key to identifying these landscapes. The height above the nearest drain (HAND) and the surface slope, which can be readily obtained from a digital elevation model, appear to be the dominant topographical parameters for hydrological classification. In this paper several indicators for classification are tested as well as their sensitivity to scale and sample size. It appears that the best results are obtained by the simple use of HAND and slope. The results obtained compare well with field observations and the topographical wetness index. The new approach appears to be an efficient method to "read the landscape" on the basis of which conceptual models can be developed.


1995 ◽  
Author(s):  
P.M. Schwartz ◽  
D.A. Levine ◽  
C.T. Hunsaker ◽  
S.P. Timmins

Author(s):  
Yu Tian ◽  
Shaogang Lei ◽  
Zhegnfu Bian ◽  
Jie Lu ◽  
Shubi Zhang ◽  
...  

Digital Elevation Models (DEMs) are widely used in geographic and environmental studies. In the current work, the fusion of multi-source DEMs is investigated to improve the overall accuracy of public domain DEMs. Multi-scale decomposition is an important analytical method in data fusion. Three multi-scale decomposition methods – the wavelet transform (WT), bidimensional empirical mode decomposition (BEMD) and nonlinear adaptive multi-scale decomposition (N-AMD) - are applied to the 1-arc-second Shuttle Radar Topography Mission Global digital elevation model (SRTM-1 DEM) and the Advanced Land Observing Satellite World 3D – 30 m digital surface model (AW3D30 DSM) in China. Of these, the WT and BEMD are popular image fusion methods. A new approach for DEM fusion is developed using N-AMD (which is originally invented to remove the cycle from sunspots). Subsequently, a window-based rule is proposed for the fusion of corresponding frequency components obtained by these methods. Quantitative results show that N-AMD is more suitable for multi-scale fusion of multi-source DEMs, taking the ice cloud and land elevation satellite (ICESat) global land surface altimetry data as a reference. The vertical accuracy of the fused DEM shows significant improvements of 29.6% and 19.3% in a mountainous region and 27.4% and 15.5% in a low-relief region, compared to the SRTM-1 and AW3D30 respectively. Furthermore, a slope position-based linear regression method is developed to calibrate the fused DEM for different slope position classes, by investigating the distribution of the fused DEM error with topography. The results indicate that the accuracy of the DEM calibrated by this method is improved by 16% and 13.6%, compared to the fused DEM in the mountainous region and low-relief region respectively, proving that it is a practical and simple means of further increasing the accuracy of the fused DEM.


2021 ◽  
Author(s):  
Alban de Lavenne ◽  
Göran Lindström ◽  
Johan Strömqvist ◽  
Charlotta Pers ◽  
Alena Bartosova ◽  
...  

<div> <p>Conceptual hydrological models can move towards process-oriented modelling when addressing broader issues than flow modelling alone. For instance, water quality modelling generally requires understanding of pathways and travel times. However, conceptual modelling often relies on a calibration procedure of discharge at the outlet, which aggregates all processes at the catchment scale. As the number of parameters increases, such an approach can lead to model over-parametrisation issues. In this study we tested if adding a second kind of observation, specifically sediment data, can help distinguish surface runoff from total discharge. This new constraint relies on a hypothesis that in stream sediment concentrations are strongly influenced by surface runoff (through erosion and remobilisation). We tested our hypothesis by applying a multi-objective calibration (simulation performance on discharge and suspended sediment) to the World-Wide HYPE hydrological model (WWH) and we used this framework to evaluate new surface flow modelling routines. We gathered data for 111 catchments spread over the USA where both discharge and sediment observation were available at a daily step at locations suitable for WWH. </p> </div><div> <p>Results show that in comparison to a single-objective calibration on discharge this multi-objective calibration enables a significant improvement on the simulation performance of suspended sediments without a significant impact on the performance of discharge. This illustrates the benefits of multi-objective calibration rather than using two calibrations made one after the other. In addition, this evaluation framework highlights the advantage of a new process description for surface runoff in the WWH model that relates soil moisture conditions to surface runoff ratio. The new surface runoff routine resulted in similar discharge performances as the original one but with fewer parameters, which reduce equifinality and can prevent inadequate model complexity in data-poor areas. </p> </div>


2006 ◽  
Vol 3 (4) ◽  
pp. 2343-2384 ◽  
Author(s):  
S. Wechsler

Abstract. Digital elevation models (DEMs) represent the topography that drives surface flow and are arguably one of the more important data sources for deriving variables used by numerous hydrologic models. A considerable amount of research has been conducted to address uncertainty associated with error in digital elevation models (DEMs) and the propagation of error to derived terrain parameters. This review brings together a discussion of research in fundamental topical areas related to DEM uncertainty that affect the use of DEMs for hydrologic applications. These areas include: (a) DEM error; (b) topographic parameters frequently derived from DEMs and the associated algorithms used to derive these parameters; (c) the influence of DEM scale as imposed by grid cell resolution; (d) DEM interpolation; and (e) terrain surface modification used to generate hydrologically-viable DEM surfaces. Each of these topical areas contributes to DEM uncertainty and may potentially influence results of distributed parameter hydrologic models that rely on DEMs for the derivation of input parameters. The current state of research on methods developed to quantify DEM uncertainty is reviewed. Based on this review, implications of DEM uncertainty and suggestions for the GIS research and user communities emerge.


Sign in / Sign up

Export Citation Format

Share Document