scholarly journals Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise

2012 ◽  
Vol 9 (3) ◽  
pp. 2629-2674 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly used as tools for characterising the subsurface and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark a combination of an airborne transient electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m giving a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, deep and shallow buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological elements mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area thus providing important information on the fresh-saltwater boundary and the chemical status of groundwater. Although, the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore is strongly influenced by the increased electrical conductivity here, buried valleys and other geological elements are still revealed. The salinity distribution indicates preferential flow paths through and along specific geological elements within the area. The effects of future sea level rise on the groundwater system and chemical status are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and assessing their control on the groundwater salinity distribution.

2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2021 ◽  
Author(s):  
Uwe Morgenstern ◽  
Zara Rawlinson

<p>Geologic data to provide information on the functioning of aquifers is often scars. For the aquifers underlying the Heretaunga Plains, Hawkes Bay, one of New Zealand’s most important groundwater systems, we used groundwater age (tritium, SF6, 14C) to inform the geologic model and to provide information on groundwater flow through alternating strata of permeable river gravel beds and fine impermeable beds that form an interconnected unconfined–confined aquifer system with complex groundwater flow processes.</p><p>The aquifers are a result of geological processes responding to climate change cycles from cold glacial when sea level was more than 100m below present sea level, to warm interglacial periods with sea level similar to present day. Glacial climate strata are river gravel, sand and silt deposits and include the artesian aquifers. The interglacial strata form the aquicludes and are marine sand, silt, and clay deposits with interbedded estuarine, swamp and coastal fluvial silt, clay, peat and gravel deposits.</p><p>We have re-visited tracer data sampled during the drilling of multi-level observation well in the early 1990s, and collected new samples from these multi-level bores in order to understand in 3D the groundwater recharge sources, groundwater recharge and flow rates, connection to the rivers, and potential groundwater discharge out to sea. Consistently young water (c. 25 years) at depth greater than 100m indicates preferential flow paths, likely related to paleo-river channels. The flow pattern obtained from the water tracer data improves the geologic information from the drill-holes, and fits with information from recent airborne transient electromagnetic (SkyTEM) geophysical surveys.</p>


2021 ◽  
Vol 91 (3) ◽  
pp. 262-295
Author(s):  
BRIAN J. WILLIS ◽  
TAO SUN ◽  
R. BRUCE AINSWORTH

Abstract Process-physics-based, coupled hydrodynamic–morphodynamic delta models are constructed to understand preserved facies heterogeneities that can influence subsurface fluid flow. Two deltaic systems are compared that differ only in the presence of waves: one river dominated and the other strongly influenced by longshore currents. To understand an entire preserved deltaic succession, the growth of multiple laterally adjacent delta lobes is modeled to define delta axial to marginal facies trends through an entire regressive–transgressive depositional succession. The goal is to refine a facies model for symmetrical wave-dominated deltas (where littoral drift diverges from the delta lobe apex). Because many factors change depositional processes on deltas, the description of the river-dominated example is included to provide a direct reference case from which to define the impact of waves on preserved facies patterns. Both systems display strong facies trends from delta axis to margin that continued into inter-deltaic areas. River-dominated delta regression preserved a dendritic branching of compensationally stacked bodies. Transgression, initiated by sea-level rise, backfilled the main channel and deposited levees and splays on the submerging delta top. Wave-dominated deltas developed dual clinoforms: a shoreface clinoform built as littoral drift carried sediment away from the river month and onshore, and a subaqueous delta-front clinoform composed of sediment accumulated below wave base. Although littoral drift in both directions away from the delta axis stabilized the position of the river at the shoreline, distributary-channel avulsions and lateral migration of river flows across the subaqueous delta top produced heterogeneities in both sets of clinoform deposits. Separation of shoreface and subaqueous delta-front clinoforms across a subaqueous delta top eroded to wave base produced a discontinuity in progradational vertical successions that appeared gradual in some locations but abrupt in others. Littoral drift flows away from adjacent deltas converged in inter-deltaic areas, producing shallow water longshore bars cut by wave-return-flow channels with associated terminal mouth bars. Transgression initiated by sea-level rise initially led to vertical aggradation of wave-reworked sheet sands on the subaqueous delta top and then retreating shoreface barrier sands as the subaerial delta top flooded. Pseudo inter-well flow tests responded to local heterogeneities in the preserved deposits. As expected, abandoned channels in the river-dominated case defined shoreline-perpendicular preferential flow paths and wave-dominated delta deposits are more locally homogeneous, but scenarios for development of more pronounced shore-parallel heterogeneity patterns for wave-influenced deltas are discussed. The results highlight the need to consider the dual clinoform nature of wave-dominated delta deposition for facies prediction and subsurface interpretation.


Ground Water ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Adrian D. Werner ◽  
Craig T. Simmons

2018 ◽  
Vol 54 ◽  
pp. 00023 ◽  
Author(s):  
Dawid Potrykus ◽  
Anna Gumuła-Kawęcka ◽  
Beata Jaworska-Szulc ◽  
Małgorzata Pruszkowska-Caceres ◽  
Adam Szymkiewicz ◽  
...  

In this research, GALDIT method was used to assess seawater intrusion in the coastal aquifer of the inner Puck Bay (Southern Baltic Sea). The impact of potential sea-level rise on groundwater vulnerability for years 2081-2100 was also considered. The study area was categorized into three classes of vulnerability: low, moderate and high. The most vulnerable area is the Hel Peninsula with northern part of the Kashubian Coastland. Increased class of aquifer vulnerability is also adopted to glacial valleys. The results of this research revealed that about 18.9% of the analyzed area is highly vulnerable to seawater intrusion, 25.3% is moderately vulnerable and 55.8% is potentially at low risk. The simulated scenario of predicted sea level rise shows enlargement of high vulnerability areas.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1690 ◽  
Author(s):  
Marmar Mabrouk ◽  
Andreja Jonoski ◽  
Gualbert H. P. Oude Essink ◽  
Stefan Uhlenbrook

As Egypt’s population increases, the demand for fresh groundwater extraction will intensify. Consequently, the groundwater quality will deteriorate, including an increase in salinization. On the other hand, salinization caused by saltwater intrusion in the coastal Nile Delta Aquifer (NDA) is also threatening the groundwater resources. The aim of this article is to assess the situation in 2010 (since this is when most data is sufficiently available) regarding the available fresh groundwater resources and to evaluate future salinization in the NDA using a 3D variable-density groundwater flow model coupled with salt transport that was developed with SEAWAT. This is achieved by examining six future scenarios that combine two driving forces: increased extraction and sea level rise (SLR). Given the prognosis of the intergovernmental panel on climate change (IPCC), the scenarios are used to assess the impact of groundwater extraction versus SLR on the seawater intrusion in the Delta and evaluate their contributions to increased groundwater salinization. The results show that groundwater extraction has a greater impact on salinization of the NDA than SLR, while the two factors combined cause the largest reduction of available fresh groundwater resources. The significant findings of this research are the determination of the groundwater volumes of fresh water, brackish, light brackish and saline water in the NDA as a whole and in each governorate and the identification of the governorates that are most vulnerable to salinization. It is highly recommended that the results of this analysis are considered in future mitigation and/or adaptation plans.


Author(s):  
Ricky Rositasari ◽  
Wahyu B. Setiawan ◽  
Indarto H. Supriadi ◽  
Hasanuddin Hasanuddin ◽  
Bayu Prayuda

Coastal area is the most vulnerable area to climate change. Cirebon coastal land in Western Java, Indonesia is low-lying coastal area which is one of the potential areal for fish culture and farming. There are also major transportation facilities for western Java province to the whole area in the island (Java) through this area. As low-lying landscape, populated and developing city, Cirebon should be considered vulnerable to future sea level rise. Geomorphology, geo-electric and remote sensing study were conducted during 2008 and 2009 in coastal land of Cirebon. The result showed that most part of coastal area in Cirebon was eroded in various scales which vulnerable turn to worst. Sea water was penetrating throughout several kilometres inland. Valuation on various land-uses would project 1,295,071,755,150 rupiah/ha/year of loss while sea level were rose 0.8 meters that would inundate various land-uses i.e., Shrimp, fish and salt ponds, rice fields and settlement in the area.Keywords: vulnerability, coastal, climate change, sea level rise


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Ricky Rositasari ◽  
Wahyu B. Setiawan ◽  
Indarto H. Supriadi ◽  
Hasanuddin Hasanuddin ◽  
Bayu Prayuda

<p>Coastal area is the most vulnerable area to climate change. Cirebon coastal land in Western Java, Indonesia is low-lying coastal area which is one of the potential areal for fish culture and farming. There are also major transportation facilities for western Java province to the whole area in the island (Java) through this area. As low-lying landscape, populated and developing city, Cirebon should be considered vulnerable to future sea level rise. Geomorphology, geo-electric and remote sensing study were conducted during 2008 and 2009 in coastal land of Cirebon. The result showed that most part of coastal area in Cirebon was eroded in various scales which vulnerable turn to worst. Sea water was penetrating throughout several kilometres inland. Valuation on various land-uses would project 1,295,071,755,150 rupiah/ha/year of loss while sea level were rose 0.8 meters that would inundate various land-uses i.e., Shrimp, fish and salt ponds, rice fields and settlement in the area.</p><p>Keywords: vulnerability, coastal, climate change, sea level rise</p>


Sign in / Sign up

Export Citation Format

Share Document