scholarly journals Partitioning of evaporation into transpiration, soil evaporation and interception: a combination of hydrometric measurements and stable isotope analyses

2012 ◽  
Vol 9 (3) ◽  
pp. 3657-3690 ◽  
Author(s):  
S. J. Sutanto ◽  
J. Wenninger ◽  
A. M. J. Coenders-Gerrits ◽  
S. Uhlenbrook

Abstract. Best practice agriculture is the key to overcome the food security problem through improvement of water use efficiency. Therefore, knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared four different methods to estimate evaporation fluxes during simulated summer conditions in a grassland lysimeter in the UNESCO-IHE laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation was measured) and the Penman-Monteith equation were applied to determine total evaporation. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The average total evaporation was 3.2 mm d−1 calculated with the water balance, 3.4 mm d−1 for the Penman-Monteith equation, 3.4 mm d−1 calculated with HYDRUS-1D, and 3.1 mm d−1 with the isotope mass balance. By use of the isotopes, we separated the total evaporation on average into 2.4 mm d−1 transpiration (77.7%), 0.4 mm d−1 soil evaporation (12.2%), and 0.3 mm d−1 interception (10.1%).

2012 ◽  
Vol 16 (8) ◽  
pp. 2605-2616 ◽  
Author(s):  
S. J. Sutanto ◽  
J. Wenninger ◽  
A. M. J. Coenders-Gerrits ◽  
S. Uhlenbrook

Abstract. Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d−1 into 0.4 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.6 mm d−1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d−1 into 1 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.3 mm d−1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1624 ◽  
Author(s):  
Lijian Zheng ◽  
Juanjuan Ma ◽  
Xihuan Sun ◽  
Xianghong Guo ◽  
Qiyun Cheng ◽  
...  

The future production of irrigated fruit orchards in the Loess Plateau of China is threatened by a shortage of freshwater. To improve water use efficiency under conditions where irrigation is limited, it is necessary to quantify the root water uptake (RWU) of apple trees. The RWU of apple trees was estimated under surface irrigation using water stable isotope technology and the Hydrus-1D model. Using the Romero-Saltos and IsoSource models, the stable isotopes of water in stems, different soil depths, and different precipitation were analyzed in a 5-year-old dwarfing apple orchard during two seasons 2016 and 2017. Hydrus-1D model was able to simulate the RWU of apple using the maximum coefficient of determination (0.9), providing a root mean square error of 0.019 cm3 cm−3 and a relative error of 2.25%. The results showed that the main depth of RWU ranged from 0–60 cm during the growth season, with the main contribution occurring in the 0–40 cm depth. These findings indicated that reducing the traditional surface irrigation depth will be important for improving the irrigation water use efficiency.


2012 ◽  
Vol 32 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Danilton L. Flumignan ◽  
Rogério T. de Faria ◽  
Bruno P. Lena

Quantifying soil evaporation is required on studies of soil water balance and applications aiming to improve water use efficiency by crops. The performance of a microlysimeter (ML) to measure soil evaporation under irrigation and non-irrigation was evaluated. The MLs were constructed using PVC tubes, with dimensions of 100 mm inner diameter, 150 mm depth and 2.5 mm wall thickness. Four MLs were uniformly distributed on the soil surface of two weighing lysimeters conducted under bare soil, previously installed at Iapar, in Londrina, PR, Brazil. The lysimeters had 1.4 m width, 1.9 m length and 1.3 m depth and were conducted with and without irrigation. Evaporation measurements by MLs (E ML) were compared with measurements by lysimeters (E L) during four different periods in the year. Differences between E ML and E L were small either for low or high atmospheric demand and also for either irrigated or non-irrigated conditions, which indicates that the ML tested here is suitable for measurement of soil evaporation.


2012 ◽  
Vol 16 (8) ◽  
pp. 2485-2497 ◽  
Author(s):  
B. Leterme ◽  
D. Mallants ◽  
D. Jacques

Abstract. The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.


2018 ◽  
Vol 66 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Vakhtang Shelia ◽  
Jirka Šimůnek ◽  
Ken Boote ◽  
Gerrit Hoogenbooom

AbstractAccurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A “tipping bucket” water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of thedindex for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively highdindex values for both models (0.94–0.99).


Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 269 ◽  
Author(s):  
Vágna Da Costa Pereira ◽  
Gilberto Chohaku Sediyama ◽  
Magna Soelma Beserra De Moura ◽  
Thieres George Freire Da Silva ◽  
Luciana Sandra Bastos De Souza

EFICIÊNCIA DO USO DA ÁGUA EM VIDEIRA ‘SYRAH’ IRRIGADA NO SUBMÉDIO DO VALE SÃO FRANCISCO1 VÁGNA DA COSTA PEREIRA1; GILBERTO CHOHAKU SEDIYAMA2; MAGNA SOELMA BESERRA DE MOURA3; THIERES GEORGE FREIRE DA SILVA4 E LUCIANA SANDRA BASTOS DE SOUZA51Resultado da Dissertação de Mestrado do primeiro autor2Doutoranda em Meteorologia Agrícola – Departamento de Engenharia Agrícola – Universidade Federal de Viçosa – Campus Viçosa – 36570-900 – Viçosa, Minas Gerais, Brasil, [email protected]. Titular – Departamento de Engenharia Agrícola – Universidade Federal de Viçosa – Campus Viçosa – 36570-900 – Viçosa, Minas Gerais, Brasil, [email protected] – Núcleo Temático de Recursos Naturais – Embrapa Semiárido – 56302-970 – Petrolina, Pernambuco, Brasil, [email protected]. Adjunto – Departamento de Ciências Agrárias – Universidade Federal Rural de Pernambuco – Unidade Acadêmica de Serra Talhada – 56909-535 – Serra Talhada, Pernambuco, Brasil, [email protected]. Assistente – Departamento de Ciências Agrárias – Universidade Federal Rural de Pernambuco – Unidade Acadêmica de Serra Talhada – 56909-535 – Serra Talhada, Pernambuco, Brasil, [email protected]  1 RESUMO O estudo teve como objetivo estimar a eficiência do uso da água (EUA) na videira ‘Syrah’ irrigada no Submédio do Vale São Francisco, com base no rendimento em função da evapotranspiração da cultura e da transpiração máxima. Para isso, a evapotranspiração da cultura foi determinada pelo balanço de energia com base no método da razão de Bowen (ETcBERB), enquanto a transpiração máxima (TR) foi estimada pelo modelo de Penman-Monteith modificado com base no índice de área foliar da cultura. Os dados micrometeorológicos foram monitorados durante um ciclo produtivo por meio de uma estação automática localizada no parreiral. A evapotranspiração de referência (ETo) também foi calculada ao longo do experimento, pelo método de Penman-Monteith parametrizado no boletim 56 da FAO. A ETo e a ETcBERB corresponderam ao valor total de 474,0 e 376,4 mm ciclo-1, com valor médio diário de 3,9 e 3,1 mm, respectivamente. A TR oscilou entre 3,5 e 0,9 mm d-1, com volume total durante o ciclo de 284,4 mm. A EUA, com base no total de água consumida e transpirada, foi de 1,17 kg m-3 e 1,55 kg m-3, respectivamente. O método do BERB e o modelo de Penman-Monteith modificado para plantas isoladas apresentaram resultados confiáveis para estimativa da EUA sob as condições climáticas da região do Submédio do Vale São Francisco. No entanto, torna-se necessário que novos estudos nesse sentido com a cultura da videira para produção de vinhos sejam realizados, principalmente nesta região Semiárida, onde a maioria das pesquisas voltadas para o manejo do vinhedo ainda estão em desenvolvimento. Palavras-chave: semiárido, evapotranspiração, razão de Bowen, transpiração máxima   PEREIRA, V. C.; SEDIYAMA, G. C.; MOURA, M. S. B.; SILVA, T. G. F.; SOUZA, L. S. B.WATER USE EFFICIENCY IN IRRIGATED "SYRAH'' GRAPE PLANTATION AT SÃO FRANCISCO RIVER VALLEY  2 ABSTRACT The objective of this work was to evaluate the water use efficiency (WUE) in  irrigated ‘Syrah’ grapevine plantation at São Francisco River valley, on the basis of yields as a function of crop evapotranspiration and maximum transpiration. To this end, the crop evapotranspiration was determined by energy balance based on the Bowen ratio method (ETcBERB), while the maximum transpiration (TR) was estimated by the modified Penman-Monteith equation based on the crop leaf area index. The micrometeorological data within the vineyard canopy were monitored using an automatic micrometeorological station, during a productive cycle. The reference evapotranspiration (ETo) was also calculated during that period using the FAO parameterized Penman-Monteith equation. The reference evapotranspiration (ETo) and the crop evapotranspiration determined by BREB method (ETcBERB), during the crop cycle, were 474.0 and 376.4 mm cycle-1, respectively, with a daily average of 3.9 and 3.1 mm. The TR rate ranged between 3.5 and 0.9 mm d-1, with total volume during 284.4 mm cycle -1. The WUE, on the basis of the total water consumed and transpiration, was 1.17 kg m-3 and 1.55 kg m-3, respectively. The BERB method and the Penman-Monteith model modified to isolated plants showed reliable results to estimate the WUE under the climatic conditions of São Francisco River valley. However, new studies on grape culture for wine production are necessary, especially in this semiarid region, where most researches focused on the vineyard management are still in development. Keywords: Bowen ratio. Evapotranspiration. Maximum transpiration. Semiarid. 


Sign in / Sign up

Export Citation Format

Share Document