Spatial heterogeneity of temperature sensitivity of soil respiration across China

2021 ◽  
Author(s):  
Zhihan Yang ◽  
Xiaolu Tang ◽  
Xinrui Luo ◽  
Yuehong Shi

<p>Soil respiration (RS), consisting of soil autotrophic respiration (RA) and heterotrophic respiration (RH), is the largest outflux of CO<sub>2</sub> from terrestrial ecosystems to the atmosphere. The temperature sensitivity (Q<sub>10</sub>) of RS is a crucial role in benchmarking the intensity of terrestrial soil carbon-climate feedbacks. However, the heterogeneity of Q<sub>10</sub> of RS has not been well explored. To fill this substantial knowledge gap, gridded long-term Q<sub>10</sub> datasets of RS at 5 cm with a spatial resolution of 1 km were developed from 515 field observations using a random forest algorithm with the linkage of climate, soil and vegetation variables. Q<sub>10</sub> of RA and RH were estimated based on the linear correlation between Q<sub>10</sub> of RS and RA/RH. Field observations indicated that regardless of ecosystem types, Q<sub>10</sub> of RS ranged from 1.54 to 4.17 with an average of 2.52. Q<sub>10</sub> varied significantly among ecosystem types, with the highest mean value of 3.18 for shrubland, followed by wetland (2.66), grassland (2.49) and forest (2.48), whereas the lowest value of 2.14 was found in cropland. RF could well explain the spatial variability of Q<sub>10</sub> of RS (model efficiency = 0.5). Temporally, Q<sub>10</sub> of RS, RA and RH did not differ significantly (<em>p </em>= 0.386). Spatially, Q<sub>10</sub> of RS, RA and RH varied greatly. In different climatic zones, the plateau areas had the highest mean Q<sub>10</sub> value of 2.88, followed by tropical areas (2.63), temperate areas (2.52), while the subtropical region had the lowest Q<sub>10</sub> on average (2.37). The predicted mean Q<sub>10</sub> of RS, RA and RH were 2.52, 2.29, 2.64, respectively, with strong spatial patterns, indicating that the traditional and constant Q<sub>10</sub> of 2 may bring great uncertainties in understanding of soil carbon-climate feedbacks in a warming climate.</p>

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Huimei Wang ◽  
Wei Liu ◽  
Wenjie Wang ◽  
Yuangang Zu

Thinning management is used to improve timber production, but only a few data are available on how it influences ecosystem C sink capacity. This study aims to clarify the effects of thinning on C sinks of larch plantations, the most widespread forests in Northeastern China. Both C influx from biomass production and C efflux from each soil respiration component and its temperature sensitivity were determined for scaling-up ecosystem C sink estimation: microbial composition is measured for clarifying mechanism for respiratory changes from thinning treatment. Thinning management induced 6.23 mol C m−2 yr−1increase in biomass C, while the decrease in heterotrophic respiration (Rh) at the thinned sites (0.9 mol C m−2 yr−1) has enhanced 14% of this biomass C increase. This decrease inRhwas a sum of the 42% decrease (4.1 mol C m−2 yr−1) in litter respiration and 3.2 mol C m−2 yr−1more CO2efflux from mineral soil in thinned sites compared with unthinned control. Increases in temperature, temperature sensitivity, alteration of litters, and microbial composition may be responsible for the contrary changes inRhfrom mineral soil and litter respiration, respectively. These findings manifested that thinning management of larch plantations could enhance biomass accumulation and decrease respiratory efflux from soil, which resulted in the effectiveness improvement in sequestrating C in forest ecosystems.


2022 ◽  
Author(s):  
Niel Verbrigghe ◽  
Niki I. W. Leblans ◽  
Bjarni D. Sigurdsson ◽  
Sara Vicca ◽  
Chao Fang ◽  
...  

Abstract. Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the cli- mate system remains highly uncertain, especially in subsoils (Ilyina and Friedlingstein, 2016; Shi et al., 2018). Using natural geothermal soil warming gradients of up to +6.4 °C in subarctic grasslands (Sigurdsson et al., 2016), we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (−2.8 ton ha−1 °C−1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (> 50 years) warming revealed that all SOC loss occurred within the first five years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon-climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions, and that SOC losses only occurred in topsoil (0–10 cm). SOC stocks in subsoil (10–30 cm), where plant roots were absent, remained unaltered, even after > 50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies.


2012 ◽  
Vol 46 ◽  
pp. 191-199 ◽  
Author(s):  
Gen Sakurai ◽  
Mayuko Jomura ◽  
Seiichiro Yonemura ◽  
Toshichika Iizumi ◽  
Yasuhito Shirato ◽  
...  

Author(s):  
Lin Yang ◽  
Qiuliang Zhang ◽  
Zhongtao Ma ◽  
Huijun Jin ◽  
Xiaoli Chang ◽  
...  

AbstractTemperature sensitivity of respiration of forest soils is important for its responses to climate warming and for the accurate assessment of soil carbon budget. The sensitivity of temperature (Ti) to soil respiration rate (Rs), and Q10 defined by e10(lnRs−lna)/Ti has been used extensively for indicating the sensitivity of soil respiration. The soil respiration under a larch (Larix gmelinii) forest in the northern Daxing’an Mountains, Northeast China was observed in situ from April to September, 2019 using the dynamic chamber method. Air temperatures (Tair), soil surface temperatures (T0cm), soil temperatures at depths of 5 and 10 cm (T5cm and T10cm, respectively), and soil-surface water vapor concentrations were monitored at the same time. The results show a significant monthly variability in soil respiration rate in the growing season (April–September). The Q10 at the surface and at depths of 5 and 10 cm was estimated at 5.6, 6.3, and 7.2, respectively. The Q10@10 cm over the period of surface soil thawing (Q10@10 cm, thaw = 36.89) were significantly higher than that of the growing season (Q10@10 cm, growth = 3.82). Furthermore, the Rs in the early stage of near-surface soil thawing and in the middle of the growing season is more sensitive to changes in soil temperatures. Soil temperature is thus the dominant factor for season variations in soil respiration, but rainfall is the main controller for short-term fluctuations in respiration. Thus, the higher sensitivity of soil respiration to temperature (Q10) is found in the middle part of the growing season. The monthly and seasonal Q10 values better reflect the responsiveness of soil respiration to changes in hydrometeorology and ground freeze-thaw processes. This study may help assess the stability of the soil carbon pool and strength of carbon fluxes in the larch forested permafrost regions in the northern Daxing’an Mountains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Priyanka Roy Chowdhury ◽  
Stefan M. Golas ◽  
Lauren V. Alteio ◽  
Joshua T. E. Stevens ◽  
Andrew F. Billings ◽  
...  

Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect. We therefore hypothesized that long-term warming will have higher expressions of genes related to carbohydrate and lipid metabolism due to increased utilization of recalcitrant carbon pools compared to controls. Because of the seasonal effect of soil respiration and the warming treatment, we further hypothesized that these patterns will be seasonal. We used RNA sequencing to show how the microbial community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA was extracted from mineral and organic soil types from two treatment plots (+5°C heated and ambient control), at two time points (June and October) and sequenced using Illumina NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated transcripts, though effect sizes overall were small. Although, warming showed a small effect on overall CAZymes expression, several carbohydrate-associated enzymes showed increased expression in heated soils (~68% of all differentially expressed transcripts). Further, exploratory analysis using an unconstrained method showed increased abundances of enzymes related to polysaccharide and lipid metabolism and decomposition in heated soils. Compared to long-term warming, we detected a relatively small effect of seasonal variation on community gene expression. Together, these results indicate that the higher carbohydrate degrading potential of bacteria in heated plots can possibly accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.


2020 ◽  
Author(s):  
Marina Dacal ◽  
Pablo García-Palacios ◽  
Sergio Asensio ◽  
Beatriz Gozalo ◽  
Victoria Ochoa ◽  
...  

AbstractSoil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and of the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a ten-year warming experiment in a biocrust-dominated dryland ecosystem with laboratory incubations to confront 0-2 years (short-term hereafter) vs. 8-10 years (long-term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short-term warming observed in areas with high biocrust cover returned to control levels in the long-term. Warming-induced increases in soil temperature were the main driver of the short-term soil respiration responses, whereas long-term soil respiration responses to warming were primarily driven by thermal acclimation and warming-induced reductions in biocrust cover. Our results highlight the importance of evaluating short and long-term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon – climate feedback in drylands.


Sign in / Sign up

Export Citation Format

Share Document