scholarly journals COMPARISON AND TIME SERIES ANALYSIS OF LANDSLIDE DISPLACEMENT MAPPED BY AIRBORNE, TERRESTRIAL AND UNMANNED AERIAL VEHICLE BASED PLATFORMS

Author(s):  
J. Pfeiffer ◽  
T. Zieher ◽  
M. Rutzinger ◽  
M. Bremer ◽  
V. Wichmann

<p><strong>Abstract.</strong> Slow moving deep-seated gravitational slope deformations are threatening infrastructure and economic wellbeing in mountainous areas. Accelerating landslides may end up in a catastrophic slope failure in terms of rapid rock avalanches. Continuous landslide monitoring enables the identification of critical acceleration thresholds, which are required in natural hazard management. Among many existing monitoring methods, laser scanning is a cost effective method providing 3D data for deriving three dimensional and areawide displacement vectors at certain morphological structures travelling on top of the landslide. Comparing displacements between selected observation periods allows the spatial interpretation of landslide acceleration or deceleration. This contribution presents five laser scanning datasets of the active Reissenschuh landslide (Tyrol, Austria) acquired by airborne laser scanning (ALS), terrestrial laser scanning (TLS) and Unmanned aerial vehicle Laser Scanning (ULS) sensors. Three observation periods with acquisition dates between 2008 and 2018 are used to derive area-wide displacement vectors. To ensure a most suitable displacement derivation between ALS, TLS and ULS platforms, an analysis investigating point cloud features within varying search radii is carried out, in order to identify a neighbourhood where common surfaces are represented platform independent or differences between the platforms are minimized. Consequent displacement vector estimation is done by ICP-Matching using morphological structures within the high resolution TLS and ULS point cloud. Displacements from the lower resolution ALS point cloud and TLS point cloud were determined using a modified version of the well-known image correlation (IMCORR) method working with point cloud derived shaded relief images combined with digital terrain models (DTM). The interplatform compatible analyses of the multi-temporal laser scanning data allows to quantify the area-wide displacement patterns of the landslide. Furthermore, changes of these displacement patterns over time are assessed area-wide. Spatially varying areas of landslide acceleration and deceleration in the order of &amp;plusmn;15&amp;thinsp;cm&amp;thinsp;a<sup>&amp;minus;1</sup> between 2008 and 2017 and an area wide acceleration of up to 20&amp;thinsp;cm&amp;thinsp;a<sup>&amp;minus;1</sup> between 2016 and 2018 are identified. Continuing the existing time series with future ULS acquisitions may enable a more complete and detailed displacement monitoring using entirely represented objects within the point clouds.</p>

Author(s):  
T. Zieher ◽  
I. Toschi ◽  
F. Remondino ◽  
M. Rutzinger ◽  
Ch. Kofler ◽  
...  

Terrestrial and airborne 3D imaging sensors are well-suited data acquisition systems for the area-wide monitoring of landslide activity. State-of-the-art surveying techniques, such as terrestrial laser scanning (TLS) and photogrammetry based on unmanned aerial vehicle (UAV) imagery or terrestrial acquisitions have advantages and limitations associated with their individual measurement principles. In this study we present an integration approach for 3D point clouds derived from these techniques, aiming at improving the topographic representation of landslide features while enabling a more accurate assessment of landslide-induced changes. Four expert-based rules involving local morphometric features computed from eigenvectors, elevation and the agreement of the individual point clouds, are used to choose within voxels of selectable size which sensor’s data to keep. Based on the integrated point clouds, digital surface models and shaded reliefs are computed. Using an image correlation technique, displacement vectors are finally derived from the multi-temporal shaded reliefs. All results show comparable patterns of landslide movement rates and directions. However, depending on the applied integration rule, differences in spatial coverage and correlation strength emerge.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


Author(s):  
A. Mayr ◽  
M. Bremer ◽  
M. Rutzinger ◽  
C. Geitner

<p><strong>Abstract.</strong> With this contribution we assess the potential of unmanned aerial vehicle (UAV) based laser scanning for monitoring shallow erosion in Alpine grassland. A 3D point cloud has been acquired by unmanned aerial vehicle laser scanning (ULS) at a test site in the subalpine/alpine elevation zone of the Dolomites (South Tyrol, Italy). To assess its accuracy, this point cloud is compared with (i) differential global navigation satellite system (GNSS) reference measurements and (ii) a terrestrial laser scanning (TLS) point cloud. The ULS point cloud and an airborne laser scanning (ALS) point cloud are rasterized into digital surface models (DSMs) and, as a proof-of-concept for erosion quantification, we calculate the elevation difference between the ULS DSM from 2018 and the ALS DSM from 2010. For contiguous spatial objects of elevation change, the volumetric difference is calculated and a land cover class (<i>bare earth</i>, <i>grassland</i>, <i>trees</i>), derived from the ULS reflectance and RGB colour, is assigned to each change object. In this test, the accuracy and density of the ALS point cloud is mainly limiting the detection of geomorphological changes. Nevertheless, the plausibility of the results is confirmed by geomorphological interpretation and documentation in the field. A total eroded volume of 672&amp;thinsp;m<sup>3</sup> is estimated for the test site (48&amp;thinsp;ha). Such volumetric estimates of erosion over multiple years are a key information for improving sustainable soil management. Based on this proof-of-concept and the accuracy analysis, we conclude that repeated ULS campaigns are a well-suited tool for erosion monitoring in Alpine grassland.</p>


2022 ◽  
Author(s):  
Lukas Winiwarter ◽  
Katharina Anders ◽  
Daniel Schröder ◽  
Bernhard Höfle

Abstract. 4D topographic point cloud data contain information on surface change processes and their spatial and temporal characteristics, such as the duration, location, and extent of mass movements, e.g., rockfalls or debris flows. To automatically extract and analyse change and activity patterns from this data, methods considering the spatial and temporal properties are required. The commonly used M3C2 point cloud distance reduces uncertainty through spatial averaging for bitemporal analysis. To extend this concept into the full 4D domain, we use a Kalman filter for point cloud change analysis. The filter incorporates M3C2 distances together with uncertainties obtained through error propagation as Bayesian priors in a dynamic model. The Kalman filter yields a smoothed estimate of the change time series for each spatial location, again associated with an uncertainty. Through the temporal smoothing, the Kalman filter uncertainty is, in general, lower than the individual bitemporal uncertainties, which therefore allows detection of more change as significant. In our example time series of bi-hourly terrestrial laser scanning point clouds of around 6 days (71 epochs) showcasing a rockfall-affected high-mountain slope in Tyrol, Austria, we are able to almost double the number of points where change is deemed significant (from 14.9 % to 28.6 % of the area of interest). Since the Kalman filter allows interpolation and, under certain constraints, also extrapolation of the time series, the estimated change values can be temporally resampled. This can be critical for subsequent analyses that are unable to deal with missing data, as may be caused by, e.g., foggy or rainy weather conditions. We demonstrate two different clustering approaches, transforming the 4D data into 2D map visualisations that can be easily interpreted by analysts. By comparison to two state-of-the-art 4D point cloud change methods, we highlight the main advantage of our method to be the extraction of a smoothed best estimate time series for change at each location. A main disadvantage of not being able to detect spatially overlapping change objects in a single pass remains. In conclusion, the consideration of combined temporal and spatial data enables a notable reduction in the associated uncertainty of the quantified change value for each point in space and time, in turn allowing the extraction of more information from the 4D point cloud dataset.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5555 ◽  
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Zhen Zhen ◽  
Yuanshuo Hao ◽  
Bin Wang

Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis. Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta equations) were then applied to model the profiles of the entire and upper crown. The results showed that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated with the 95th width percentile was adequate when compared with the predicted value of the existing field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D convex hull volumes, the crown volumes predicted by our profile models had significantly smaller errors. The results revealed that the crown profile can be well described by using UAV-LiDAR, providing a novel way to obtain crown profile information without destructive sampling and showing the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.


2019 ◽  
Vol 11 (10) ◽  
pp. 1188
Author(s):  
Li Zheng ◽  
Yuhao Li ◽  
Meng Sun ◽  
Zheng Ji ◽  
Manzhu Yu ◽  
...  

VLS (Vehicle-borne Laser Scanning) can easily scan the road surface in the close range with high density. UAV (Unmanned Aerial Vehicle) can capture a wider range of ground images. Due to the complementary features of platforms of VLS and UAV, combining the two methods becomes a more effective method of data acquisition. In this paper, a non-rigid method for the aerotriangulation of UAV images assisted by a vehicle-borne light detection and ranging (LiDAR) point cloud is proposed, which greatly reduces the number of control points and improves the automation. We convert the LiDAR point cloud-assisted aerotriangulation into a registration problem between two point clouds, which does not require complicated feature extraction and match between point cloud and images. Compared with the iterative closest point (ICP) algorithm, this method can address the non-rigid image distortion with a more rigorous adjustment model and a higher accuracy of aerotriangulation. The experimental results show that the constraint of the LiDAR point cloud ensures the high accuracy of the aerotriangulation, even in the absence of control points. The root-mean-square error (RMSE) of the checkpoints on the x, y, and z axes are 0.118 m, 0.163 m, and 0.084m, respectively, which verifies the reliability of the proposed method. As a necessary condition for joint mapping, the research based on VLS and UAV images in uncontrolled circumstances will greatly improve the efficiency of joint mapping and reduce its cost.


Author(s):  
T. Zieher ◽  
M. Bremer ◽  
M. Rutzinger ◽  
J. Pfeiffer ◽  
P. Fritzmann ◽  
...  

<p><strong>Abstract.</strong> Multi-temporal 3D point clouds acquired with a laser scanner can be efficiently used for an area-wide assessment of landslide-induced surface changes. In the present study, displacements of the Vögelsberg landslide (Tyrol, Austria) are assessed based on available data acquired with airborne laser scanning (ALS) in 2013 and data acquired with an unmanned aerial vehicle (UAV) equipped with a laser scanner (ULS) in 2018. Following the data pre-processing steps including registration and ground filtering, buildings are segmented and extracted from the datasets. The roofs, represented as multi-temporal 3D point clouds are then used to derive displacement vectors with a novel matching tool based on the iterative closest point (ICP) algorithm. The resulting mean annual displacements are compared to the results of a geodetic monitoring based on an automatic tracking total station (ATTS) measuring 53 retroreflective prisms across the study area every hour since May 2016. In general, the results are in agreement concerning the mean annual magnitude (ATTS: 6.4&amp;thinsp;cm within 2.2 years, 2.9&amp;thinsp;cm a<sup>&amp;minus;1</sup>; laser scanning data: 13.2&amp;thinsp;cm within 5.4 years, 2.4&amp;thinsp;cm a<sup>&amp;minus;1</sup>) and direction of the derived displacements. The analysis of the laser scanning data proved suitable for deriving long-term landslide displacements and can provide additional information about the deformation of single roofs.</p>


Sign in / Sign up

Export Citation Format

Share Document