scholarly journals Full 4D Change Analysis of Topographic Point Cloud Time Series using Kalman Filtering

2022 ◽  
Author(s):  
Lukas Winiwarter ◽  
Katharina Anders ◽  
Daniel Schröder ◽  
Bernhard Höfle

Abstract. 4D topographic point cloud data contain information on surface change processes and their spatial and temporal characteristics, such as the duration, location, and extent of mass movements, e.g., rockfalls or debris flows. To automatically extract and analyse change and activity patterns from this data, methods considering the spatial and temporal properties are required. The commonly used M3C2 point cloud distance reduces uncertainty through spatial averaging for bitemporal analysis. To extend this concept into the full 4D domain, we use a Kalman filter for point cloud change analysis. The filter incorporates M3C2 distances together with uncertainties obtained through error propagation as Bayesian priors in a dynamic model. The Kalman filter yields a smoothed estimate of the change time series for each spatial location, again associated with an uncertainty. Through the temporal smoothing, the Kalman filter uncertainty is, in general, lower than the individual bitemporal uncertainties, which therefore allows detection of more change as significant. In our example time series of bi-hourly terrestrial laser scanning point clouds of around 6 days (71 epochs) showcasing a rockfall-affected high-mountain slope in Tyrol, Austria, we are able to almost double the number of points where change is deemed significant (from 14.9 % to 28.6 % of the area of interest). Since the Kalman filter allows interpolation and, under certain constraints, also extrapolation of the time series, the estimated change values can be temporally resampled. This can be critical for subsequent analyses that are unable to deal with missing data, as may be caused by, e.g., foggy or rainy weather conditions. We demonstrate two different clustering approaches, transforming the 4D data into 2D map visualisations that can be easily interpreted by analysts. By comparison to two state-of-the-art 4D point cloud change methods, we highlight the main advantage of our method to be the extraction of a smoothed best estimate time series for change at each location. A main disadvantage of not being able to detect spatially overlapping change objects in a single pass remains. In conclusion, the consideration of combined temporal and spatial data enables a notable reduction in the associated uncertainty of the quantified change value for each point in space and time, in turn allowing the extraction of more information from the 4D point cloud dataset.

Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


2021 ◽  
Vol 11 (24) ◽  
pp. 11804
Author(s):  
Gabriela Bariczová ◽  
Ján Erdélyi ◽  
Richard Honti ◽  
Lukáš Tomek

Building information modeling (BIM) represents significant progress in the field of digitalization and informatization of the construction process. The virtual model (BIM model) is the source of graphic data among other information, which are applicable for geometry verification of the building’s structures. For this purpose, data and information about the building should be collected. Comparison of the BIM model (design) with as-built 3D models enables the evaluation of the quality of the as-built structures. The most effective methods for spatial data collection are terrestrial laser scanning (TLS) and close-range photogrammetry. Using both methods, measurement can result in a point cloud. The paper describes an approach for verifying the geometry of wall structures. The graphic data of designed structures are represented by the existing BIM model. The approach presented uses the Industry Foundation Classes (IFC) file format from which the designed geometry is derived. The as-built models of the structures are created from point clouds. Point cloud segmentation uses a combination of regression, filtering based on local normal vectors, and curve segmentation. Consequently, the designed and the as-built models (segmented from the point cloud) are compared.


Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


Author(s):  
J. Pfeiffer ◽  
T. Zieher ◽  
M. Rutzinger ◽  
M. Bremer ◽  
V. Wichmann

<p><strong>Abstract.</strong> Slow moving deep-seated gravitational slope deformations are threatening infrastructure and economic wellbeing in mountainous areas. Accelerating landslides may end up in a catastrophic slope failure in terms of rapid rock avalanches. Continuous landslide monitoring enables the identification of critical acceleration thresholds, which are required in natural hazard management. Among many existing monitoring methods, laser scanning is a cost effective method providing 3D data for deriving three dimensional and areawide displacement vectors at certain morphological structures travelling on top of the landslide. Comparing displacements between selected observation periods allows the spatial interpretation of landslide acceleration or deceleration. This contribution presents five laser scanning datasets of the active Reissenschuh landslide (Tyrol, Austria) acquired by airborne laser scanning (ALS), terrestrial laser scanning (TLS) and Unmanned aerial vehicle Laser Scanning (ULS) sensors. Three observation periods with acquisition dates between 2008 and 2018 are used to derive area-wide displacement vectors. To ensure a most suitable displacement derivation between ALS, TLS and ULS platforms, an analysis investigating point cloud features within varying search radii is carried out, in order to identify a neighbourhood where common surfaces are represented platform independent or differences between the platforms are minimized. Consequent displacement vector estimation is done by ICP-Matching using morphological structures within the high resolution TLS and ULS point cloud. Displacements from the lower resolution ALS point cloud and TLS point cloud were determined using a modified version of the well-known image correlation (IMCORR) method working with point cloud derived shaded relief images combined with digital terrain models (DTM). The interplatform compatible analyses of the multi-temporal laser scanning data allows to quantify the area-wide displacement patterns of the landslide. Furthermore, changes of these displacement patterns over time are assessed area-wide. Spatially varying areas of landslide acceleration and deceleration in the order of &amp;plusmn;15&amp;thinsp;cm&amp;thinsp;a<sup>&amp;minus;1</sup> between 2008 and 2017 and an area wide acceleration of up to 20&amp;thinsp;cm&amp;thinsp;a<sup>&amp;minus;1</sup> between 2016 and 2018 are identified. Continuing the existing time series with future ULS acquisitions may enable a more complete and detailed displacement monitoring using entirely represented objects within the point clouds.</p>


2021 ◽  
Vol 2 ◽  
pp. 1-14
Author(s):  
Florian Politz ◽  
Monika Sester ◽  
Claus Brenner

Abstract. Detecting changes is an important task to update databases and find irregularities in spatial data. Every couple of years, national mapping agencies (NMAs) acquire nation-wide point cloud data from Airborne Laser Scanning (ALS) as well as from Dense Image Matching (DIM) using aerial images. Besides deriving several other products such as Digital Elevation Models (DEMs) from them, those point clouds also offer the chance to detect changes between two points in time on a large scale. Buildings are an important object class in the context of change detection to update cadastre data. As detecting changes manually is very time consuming, the aim of this study is to provide reliable change detections for different building sizes in order to support NMAs in their task to update their databases. As datasets of different times may have varying point densities due to technological advancements or different sensors, we propose a raster-based approach, which is independent of the point density altogether. Within a raster cell, our approach considers the height distribution of all points for two points in time by exploiting the Jensen-Shannon distance to measure their similarity. Our proposed method outperforms simple threshold methods on detecting building changes with respect to the same or different point cloud types. In combination with our proposed class change detection approach, we achieve a change detection performance measured by the mean F1-Score of about 71% between two ALS and about 60% between ALS and DIM point clouds acquired at different times.


AГГ+ ◽  
2020 ◽  
Vol 1 (8) ◽  
Author(s):  
Miroslav Vujasinović ◽  
Miodrag Regodić ◽  
Stefan Kecman

Spatial data collection has been considerably improved with the invention of LiDAR and other laser scanning technologies. The result of surveying with these methods is a 3D point cloud. The amount of data obtained requires specialized software solutions to solve the tasks set before the engineering profession in this field. The paper describes data collection technologies resulting in point clouds, commercial software solutions for point cloud processing, and presents an open source Cloud Compare software solution and its advantages.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Francisco Mauro ◽  
Andrew T. Hudak ◽  
Patrick A. Fekety ◽  
Bryce Frank ◽  
Hailemariam Temesgen ◽  
...  

Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.


Sign in / Sign up

Export Citation Format

Share Document