scholarly journals A STRUCTURE OF UML PROFILES FOR MODELLING OF GEOSPATIAL INFORMATION IN GIS, ITS AND BIM

Author(s):  
K. Jetlund

Abstract. This study aims to improve the interoperability between models of geospatial information from the applications domains of Geographic Information Systems (GIS), Intelligent Transport Systems (ITS) and Building Information Models (BIM). A state-of-the-art analysis showed that the Unified Modelling Language (UML) and Model-Driven Architecture (MDA) are used for modelling information in a geospatial context in all three domains, but with different approaches and levels of formality. A structure of formal UML profiles for modelling of geospatial information in GIS, ITS and BIM is suggested and tested for implementation. The Core Geospatial Profile (GCP) and general encoding profiles for the Geography Markup Language (GML) and the Web Ontology Language (OWL) are based on adapted concepts from ISO/TC 211 standards. Community specific profiles for conceptual models and encodings are based on UML profiles and the use of UML for specific information models in the three application domains. The studies and related research showed that the structure of UML profiles could be implemented and used for information modelling in the UML software Enterprise Architect and that existing profiles and information models could be adapted into the framework. Integration of information models in a common approach based on MDA and UML establishes a fundament for improved interoperability through a shared understanding of the digital representation of the real world.

2019 ◽  
Vol 8 (3) ◽  
pp. 141 ◽  
Author(s):  
Knut Jetlund ◽  
Erling Onstein ◽  
Lizhen Huang

This study aims to improve interoperability between Geographic Information Systems (GIS) and geospatial databases for Intelligent Transport Systems (ITS). Road authorities maintain authoritative information for legal and safe navigation in GIS databases. This information needs to be shared with ITS databases for route planning and navigation, and for use in combination with local knowledge from vehicle sensors. Current solutions for modelling and exchanging geospatial information in the domains of GIS and ITS have been studied and evaluated. Limitations have been pointed out related to usability in the GIS domain and flexibility for representing an evolving real world. A prototype for an improved information exchange model has been developed, based on ISO/TC 211 standards, Model Driven Architecture (MDA), and concepts from the studied solutions. The prototype contains generic models for feature catalogues and features, with implementation schemas in the Geography Markup Language (GML). Results from a case study indicated that the models could be implemented with feature catalogues from the ITS standard ISO 14825 Geographic Data Files (GDF) and the INSPIRE Transport Networks specification. The prototype can be a candidate solution for improved information exchange from GIS databases to ITS databases that are based on the Navigation Data Standard.


2019 ◽  
Vol 8 (9) ◽  
pp. 365 ◽  
Author(s):  
Jetlund ◽  
Onstein ◽  
Huang

This study aims to improve the implementation of models of geospatial information in Web Ontology Language (OWL). Large amounts of geospatial information are maintained in Geographic Information Systems (GIS) based on models according to the Unified Modeling Language (UML) and standards from ISO/TC 211 and the Open Geospatial Consortium (OGC). Sharing models and geospatial information in the Semantic Web will increase the usability and value of models and information, as well as enable linking with spatial and non-spatial information from other domains. Methods for conversion from UML to OWL for basic concepts used in models of geospatial information have been studied and evaluated. Primary conversion challenges have been identified with specific attention to whether adapted rules for UML modelling could contribute to improved conversions. Results indicated that restrictions related to abstract classes, unions, compositions and code lists in UML are challenging in the Open World Assumption (OWA) on which OWL is based. Two conversion challenges are addressed by adding more semantics to UML models: global properties and reuse of external concepts. The proposed solution is formalized in a UML profile supported by rules and recommendations and demonstrated with a UML model based on the Intelligent Transport Systems (ITS) standard ISO 14825 Geographic Data Files (GDF). The scope of the resulting ontology will determine to what degree the restrictions shall be maintained in OWL, and different conversion methods are needed for different scopes.


Facilities ◽  
2019 ◽  
Vol 38 (5/6) ◽  
pp. 378-394
Author(s):  
Sandra T. Matarneh ◽  
Mark Danso-Amoako ◽  
Salam Al-Bizri ◽  
Mark Gaterell ◽  
Rana T. Matarneh

Purpose This paper aims to identify a generic set of information requirements for facilities management (FM) systems, which should be included in BIM as-built models for efficient information exchange between BIM and FM systems, and to propose a process to identify, verify and collect the required information for use in FM systems during the project’s lifecycle. Design/methodology/approach Both qualitative and quantitative approaches were applied at different stages of the study’s sequential design. The collection and analysis of qualitative data was based on an extensive literature review of similar studies, standards, best practices and case study documentation. This was followed by a questionnaire survey of 191 FM practitioners in the UK. This formed the background of the third stage, which was the development of the information management process to streamline information exchange between building information models and FM systems. Findings The study identifies a generic list of information requirements of building information models to support FM systems. In addition, the study presents an information management process that generates a specific database for FM systems using an open data format. Originality/value The existing literature focuses on specific building types (educational buildings) or specific information requirements related to particular systems (mechanical systems). The existing standards, guidelines and best practices focus on the information requirements to support the operations and maintenance (O&M) phase in general. This study is different from previous studies because it develops a set of specific information requirements for building information models to support FM systems. FM organisations and owners can use the proposed list of information requirements as a base to generate specific data output for their FM systems’ input, to decrease the redundant activity of manual data entry and focus their efforts on key activities.


Author(s):  
Umit Isikdag ◽  
Jason Underwood ◽  
Murat Kuruoglu ◽  
Alias Abdul-Rahman

In the near future Building Information Modelling will be applied in different areas of the AEC industry. Building Information Models (BIMs) will be used as resources to enable interoperability of software and ‘Building Information Modelling’ based Integrated Project Delivery will be realised as a common process of managing a project over a single shared information backbone. Thus, facilitating the collaborative use of shared BIMs is becoming important in parallel with the industrial demand in the field. Some urban management tasks such as disaster management, delivery of goods and services, and cityscape visualisation are managed by using Geospatial Information Systems as the current state-of-art, as the tasks in these processes require a high level and volume of integrated geospatial information. Several of these tasks such as fire response management require detailed geometric and semantic information about buildings in the form of geospatial information, while tasks such as visualisation of the urban fabric might require less (geometric and semantic) information. Today service-oriented architectures are becoming more popular in terms of enabling integration and collaboration over distributed environments. In this context, this short chapter presents an enhancement for a BIM Web Service pattern (i.e. RESTful BIM) that will help in facilitating information transfer from Building Information Models into the geospatial environment. The chapter starts with the background section later provides a review on the RESTful BIM pattern. Geospatial Views that can be developed for the RESTFul BIM will be elaborated on later in the chapter.


Author(s):  
Mohamed El-Mekawy ◽  
Anders Östman

The Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) are the two most prominent semantic models for the representation of Building Information Models (BIM) and geospatial objects. IFC and CityGML use different terminologies to describe the same domain, and there is a great heterogeneity in their semantics. For bidirectional conversions between these models, an intermediate Unified Building Model (UBM) is proposed that facilitates the transfer of spatial information from IFC to CityGML and vice versa. A unified model in the current study is defined as a superset model that is extended to contain all the features and objects from both IFC and CityGML building models. The conversion is a two-steps process in which a model is first converted to the unified model and then to the target model.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


2018 ◽  
Vol 4 (10) ◽  
pp. 10
Author(s):  
Ankur Mishra ◽  
Aayushi Priya

Transportation or transport sector is a legal source to take or carry things from one place to another. With the passage of time, transportation faces many issues like high accidents rate, traffic congestion, traffic & carbon emissions air pollution, etc. In some cases, transportation sector faced alleviating the brutality of crash related injuries in accident. Due to such complexity, researchers integrate virtual technologies with transportation which known as Intelligent Transport System. Intelligent Transport Systems (ITS) provide transport solutions by utilizing state-of-the-art information and telecommunications technologies. It is an integrated system of people, roads and vehicles, designed to significantly contribute to improve road safety, efficiency and comfort, as well as environmental conservation through realization of smoother traffic by relieving traffic congestion. This paper aims to elucidate various aspects of ITS - it's need, the various user applications, technologies utilized and concludes by emphasizing the case study of IBM ITS.


Sign in / Sign up

Export Citation Format

Share Document