scholarly journals APPLICATION OF LiDAR DATE TO ASSESS THE LANDSLIDE SUSCEPTIBILITY MAP USING WEIGHTS OF EVIDENCE METHOD – AN EXAMPLE FROM PODHALE REGION (SOUTHERN POLAND)

Author(s):  
Mirosław Kamiński

Podhale is a region in southern Poland, which is the northernmost part of the Central Carpathian Mountains. It is characterized by the presence of a large number of landslides that threaten the local infrastructure. In an article presents application of LiDAR data and geostatistical methods to assess landslides susceptibility map. Landslide inventory map were performed using LiDAR data and field work. The Weights of Evidence method was applied to assess landslides susceptibility map. Used factors for modeling: slope gradient, slope aspect, elevation, drainage density, faults density, lithology and curvature. All maps were subdivided into different classes. Then were converted to grid format in the ArcGIS 10.0. The conditional independence test was carried out to determine factors that are conditionally independent of each other with landslides. As a result, chi-square test for further GIS analysis used only five factors: slope gradient, slope aspect, elevation, drainage density and lithology. The final prediction results, it is concluded that the susceptibility map gives useful information both on present instability of the area and its possible future evolution in agreement with the morphological evolution of the area.

Author(s):  
Mirosław Kamiński

Podhale is a region in southern Poland, which is the northernmost part of the Central Carpathian Mountains. It is characterized by the presence of a large number of landslides that threaten the local infrastructure. In an article presents application of LiDAR data and geostatistical methods to assess landslides susceptibility map. Landslide inventory map were performed using LiDAR data and field work. The Weights of Evidence method was applied to assess landslides susceptibility map. Used factors for modeling: slope gradient, slope aspect, elevation, drainage density, faults density, lithology and curvature. All maps were subdivided into different classes. Then were converted to grid format in the ArcGIS 10.0. The conditional independence test was carried out to determine factors that are conditionally independent of each other with landslides. As a result, chi-square test for further GIS analysis used only five factors: slope gradient, slope aspect, elevation, drainage density and lithology. The final prediction results, it is concluded that the susceptibility map gives useful information both on present instability of the area and its possible future evolution in agreement with the morphological evolution of the area.


2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 505 ◽  
Author(s):  
Thi Nguyen ◽  
Cheng-Chien Liu

This paper proposes a new approach of using the analytic hierarchy process (AHP), in which the AHP was combined with bivariate analysis and correlation statistics to evaluate the importance of the pairwise comparison. Instead of summarizing expert experience statistics to establish a scale, we then analyze the correlation between the properties of the related factors with the actual landslide data in the study area. In addition, correlation and dependence statistics are also used to analyze correlation coefficients of preparatory factors. The product of this research is a landslide susceptibility map (LSM) generated by five factors (slope, aspect, drainage density, lithology, and land-use) and pre-event landslides (Typhoon Kalmaegi events), and then validated by post-event landslides and new landslides occurring in during the events (Typhoon Kalmaegi and Typhoon Morakot). Validating the results by the binary classification method showed that the model has reasonable accuracy, such as 81.22% accurate interpretation for post-event landslides (Typhoon Kalmaegi), and 70.71% exact predictions for new landslides occurring during Typhoon Kalmaegi.


2021 ◽  
Author(s):  
Désiré Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

Abstract The aim of this research is the modelling of landslide susceptibility in the hillslopes of Bujumbura using the Weights-of-Evidence model, a probabilistic data modelling approach relevant for predicting future landslides at a regional scale. Initially, characteristics and spatial mapping of different landslides type were identified (fall, flow, slide, complex) by thorough interpretation of high-resolution remote sensing data (mountainous areas with difficult access) and intensive fieldwork. Subsequently, the main landslides controlling factors were selected (lithology, fault density, land use, drainage density, slope aspect, curvature, slope angle, and elevation) using in-depth field knowledge and relevant literature. A landslide inventory map with a total of 569 landslide sites was constructed using the data from various sources. Out of those 569 landslide sites, 285 (50.1%) of the data taken before the 2000s was used for training and the remaining 284 (49.9%) sites (post-2000 events) were used for the accuracy assessment purpose. Thereafter, a prediction map of future landslides was generated with an accuracy of 73.7%. The main geo-environmental landslides factors retained are the high density of drainage networks, the lithology often made with weathered gneiss, the high fault density, the steep topography and the convex slope curvature. The landslide susceptibility map validated was reclassified into very high, high, moderate, low and very low zones. The established susceptibility map will allow with the interaction of the real terrain to locate roads, dwellings, urban extension areas, dams located in high landslides risk zones. These infrastructures will require intervention to address their vulnerability with new facilities, slope stabilization, creation of bypass roads, etc. The susceptibility map produced will be a powerful decision-making tool for drawing up appropriate development plans. Such an approach will make it possible to mitigate the socio-economic impacts due to slope instabilities.


2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Nader Saadatkhah ◽  
Azman Kassim ◽  
Lee Min Lee ◽  
Gambo Haruna Yunusa

Hulu Kelang is a region in Malaysia which is very susceptible to landslides. From 1990 to 2011, a total of 28 major landslide events had been reported in this area. This paper evaluates and compares the probability-frequency ratio (FR), statistical index (Wi), and weighting factor (Wf), used for assessing landslide susceptibility in the study area. Eleven landslide influencing factors were considered in the analyses. These factors included lithology, land cover, curvature, slope inclination, slope aspect, drainage density, elevation, distance to lake and stream, distance to road and trenches and two indices (the stream power index (SPI) and the topographic wetness index (TWI)) found in the area. The accuracy of the maps produced from the three models was verified using a receiver operating characteristics (ROC). The verification results indicated that the probability-frequency ratio (FR) model which was developed quantitatively based on probabilistic analysis of spatial distribution of historical landslide events was capable of producing a more reliable landslide susceptibility map in this study area compared to its other counterparts. About 89% of the landslide locations have been predicted accurately by using the FR map. 


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nega Getachew ◽  
Matebie Meten

AbstractKabi-Gebro locality of Gundomeskel area is located within the Abay Basin at Dera District of North Shewa Zone in the Central highland of Ethiopia and it is about 320Km from Addis Ababa. This is characterized by undulating topography, intense rainfall, active erosion and highly cultivated area. Geologically, it comprises weathered sedimentary and volcanic rocks. Active landslides damaged the gravel road, houses and agricultural land. The main objective of this research is to prepare the landslide susceptibility map using GIS-based Weights of Evidence model. Based on detailed field assessment and Google Earth image interpretation, 514 landslides were identified and classified randomly into training landslides (80%) and validation landslides (20%). The most common types of landslides in the study area include earth slide (rotational and translational slide), debris slide, debris flow, rock fall, topple, rock slide, creep and complex. Nine landslide causative factors such as lithology, slope, aspect, curvature, land use/land cover, distance to stream, distance to lineament, distance to spring and rainfall were used to prepare a landslide susceptibility map of the study area by adding the weights of contrast values of these causative factors using a rater calculator of the spatial analyst tool in ArcGIS. The final landslide susceptibility map was reclassified as very low, low, moderate, high and very high susceptibility classes. This susceptibility map was validated using landslide density index and area under the curve (AUC). The result from this model validation showed a success rate and a validation rate accuracy of 82.4% and 83.4% respectively. Finally, implementing afforestation strategies on bare land, constructing surface drainage channels & ditches, providing engineering reinforcements such as gabion walls, retaining walls, anchors and bolts whenever necessary and prohibiting hazardous zones can be recommended in order to lessen the impact of landslides in this area.


2021 ◽  
Vol 13 (15) ◽  
pp. 8332
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Topography-induced microclimate differences determine the local spatial variation of soil characteristics as topographic factors may play the most essential role in changing the climatic pattern. The aim of this study was to investigate the spatial distribution of soil organic carbon (SOC) with respect to the slope gradient and aspect, and to quantify their influence on SOC within different land use/cover classes. The study area is the Region of Niš in Serbia, which is characterized by complex topography with large variability in the spatial distribution of SOC. Soil samples at 0–30 cm and 30–60 cm were collected from different slope gradients and aspects in each of the three land use/cover classes. The results showed that the slope aspect significantly influenced the spatial distribution of SOC in the forest and vineyard soils, where N- and NW-facing soils had the highest level of organic carbon in the topsoil. There were no similar patterns in the uncultivated land. No significant differences were found in the subsoil. Organic carbon content was higher in the topsoil, regardless of the slope of the terrain. The mean SOC content in forest land decreased with increasing slope, but the difference was not statistically significant. In vineyards and uncultivated land, the SOC content was not predominantly determined by the slope gradient. No significant variations across slope gradients were found for all observed soil properties, except for available phosphorus and potassium. A positive correlation was observed between SOC and total nitrogen, clay, silt, and available phosphorus and potassium, while a negative correlation with coarse sand was detected. The slope aspect in relation to different land use/cover classes could provide an important reference for land management strategies in light of sustainable development.


2018 ◽  
Vol 8 (8) ◽  
pp. 1369 ◽  
Author(s):  
Alireza Arabameri ◽  
Biswajeet Pradhan ◽  
Hamid Reza Pourghasemi ◽  
Khalil Rezaei ◽  
Norman Kerle

Gully erosion triggers land degradation and restricts the use of land. This study assesses the spatial relationship between gully erosion (GE) and geo-environmental variables (GEVs) using Weights-of-Evidence (WoE) Bayes theory, and then applies three data mining methods—Random Forest (RF), boosted regression tree (BRT), and multivariate adaptive regression spline (MARS)—for gully erosion susceptibility mapping (GESM) in the Shahroud watershed, Iran. Gully locations were identified by extensive field surveys, and a total of 172 GE locations were mapped. Twelve gully-related GEVs: Elevation, slope degree, slope aspect, plan curvature, convergence index, topographic wetness index (TWI), lithology, land use/land cover (LU/LC), distance from rivers, distance from roads, drainage density, and NDVI were selected to model GE. The results of variables importance by RF and BRT models indicated that distance from road, elevation, and lithology had the highest effect on GE occurrence. The area under the curve (AUC) and seed cell area index (SCAI) methods were used to validate the three GE maps. The results showed that AUC for the three models varies from 0.911 to 0.927, whereas the RF model had a prediction accuracy of 0.927 as per SCAI values, when compared to the other models. The findings will be of help for planning and developing the studied region.


2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


Sign in / Sign up

Export Citation Format

Share Document