scholarly journals EXTRACTION OF LEAF ANGLE DISTRIBUTION FROM AN INDIVIDUAL BROADLEAF TREE USING TERRESTRIAL LASER SCANNING DATA

Author(s):  
Y. Chen ◽  
Z. Liu ◽  
W. Zhang ◽  
C. Qiao ◽  
H. Gu

<p><strong>Abstract.</strong> The angular distribution of leaves is a key vegetation structural parameter for evaluating the reflection and transmission of solar radiation through vegetation canopies. Accurate extraction of Leaf Angle Distribution (LAD) is of great importance in estimating other vegetation structural parameters such as the canopy clumping and leaf area index. However, field measurement of LAD is time-consuming, labour-intensive and subjective. In most studies, LAD is assumed to follow the spherical distribution assumption within canopy which may lead to considerable errors. To address this issue, we proposed a new approach for leaf segmentation and LAD measurement of individual broadleaf tree based on the TLS point cloud data. Based on the point density, point continuity and the distribution of intensity in the point cloud, this approach provides a fast and accurate leaf segmentation and LAD extraction strategy. Results of this TLS-based LAD method compared well with that extracted by the field measurement and the MDI-based method. This strategy shows its potential and applicability in accurate LAD measurement and LAI estimation.</p>

2021 ◽  
Vol 13 (6) ◽  
pp. 1091
Author(s):  
Chiming Tong ◽  
Yunfei Bao ◽  
Feng Zhao ◽  
Chongrui Fan ◽  
Zhenjiang Li ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) has been used as an indicator for the photosynthetic activity of vegetation at regional and global scales. Canopy structure affects the radiative transfer process of SIF within canopy and causes the angular-dependencies of SIF. A common solution for interpreting these effects is the use of physically-based radiative transfer models. As a first step, a comprehensive evaluation of the three-dimensional (3D) radiative transfers is needed using ground truth biological and hyperspectral remote sensing measurements. Due to the complexity of forest modeling, few studies have systematically investigated the effect of canopy structural factors and sun-target-viewing geometry on SIF. In this study, we evaluated the capability of the Fluorescence model with the Weighted Photon Spread method (FluorWPS) to simulate at-sensor radiance and SIF at the top of canopy, and identified the influence of the canopy structural factors and sun-target-viewing geometry on the magnitude and directional response of SIF in deciduous forests. To evaluate the model, a 3D forest scene was first constructed from Goddard’s LiDAR Hyperspectral and Thermal (G-LiHT) LiDAR data. The reliability of the reconstructed scene was confirmed by comparing the calculated leaf area index with the measured ones from the scene, which resulted in a relative error of 3.5%. Then, the performance of FluorWPS was evaluated by comparing the simulated at-sensor radiance spectra with the spectra measured from the DUAL and FLUO spectrometer of HyPlant. The radiance spectra simulated by FluorWPS agreed well with the measured spectra by the two high-performance imaging spectrometers, with a coefficient of determination (R2) of 0.998 and 0.926, respectively. SIF simulated by the FluorWPS model agreed well with the values of the DART model. Furthermore, a sensitivity analysis was conducted to assess the effect of the canopy structural parameters and sun-target-viewing geometry on SIF. The maximum difference of the total SIF can be as large as 45% and 47% at the wavelengths of 685 nm and 740 nm for different foliage area volume densities (FAVDs), and 48% and 46% for fractional vegetation covers (FVCs), respectively. Leaf angle distribution has a markedly influence on the magnitude of SIF, with a ratio of emission part to SIF range from 0.48 to 0.72. SIF from the grass layer under the tree contributed 10%+ more to the top of canopy SIF even for a dense forest canopy (FAVD = 3.5 m−1, FVC = 76%). The red SIF at the wavelength of 685 nm had a similar shape to the far-red SIF at a wavelength of 740 nm but with higher variability in varying illumination conditions. The integration of the FluorWPS model and LiDAR modeling can greatly improve the interpretation of SIF at different scales and angular configurations.


2019 ◽  
Vol 11 (21) ◽  
pp. 2536 ◽  
Author(s):  
Kuangting Kuo ◽  
Kenta Itakura ◽  
Fumiki Hosoi

It is critical to take the variability of leaf angle distribution into account in a remote sensing analysis of a canopy system. Due to the physical limitations of field measurements, it is difficult to obtain leaf angles quickly and accurately, especially with a complicated canopy structure. An application of terrestrial LiDAR (Light Detection and Ranging) is a common solution for the purposes of leaf angle estimation, and it allows for the measurement and reconstruction of 3D canopy models with an arbitrary volume of leaves. However, in most cases, the leaf angle is estimated incorrectly due to inaccurate leaf segmentation. Therefore, the objective of this study was an emphasis on the development of efficient segmentation algorithms for accurate leaf angle estimation. Our study demonstrates a leaf segmentation approach based on a k-means algorithm coupled with an octree structure and the subsequent application of plane-fitting to estimate the leaf angle. Furthermore, the accuracy of the segmentation and leaf angle estimation was verified. The results showed average segmentation accuracies of 95% and 90% and absolute angular errors of 3° and 6° in the leaves sampled from mochi and Japanese camellia trees, respectively. It is our conclusion that our method of leaf angle estimation has high potential and is expected to make a significant contribution to future plant and forest research.


2019 ◽  
Vol 11 (5) ◽  
pp. 572 ◽  
Author(s):  
Wei Su ◽  
Jianxi Huang ◽  
Desheng Liu ◽  
Mingzheng Zhang

Leaf angle is a critical structural parameter for retrieving canopy leaf area index (LAI) using the PROSAIL model. However, the traditional method using default leaf angle distribution in the PROSAIL model does not capture the phenological dynamics of canopy growth. This study presents a LAI retrieval method for corn canopies using PROSAIL model with leaf angle distribution functions referred from terrestrial laser scanning points at four phenological stages during the growing season. Specifically, four inferred maximum-probability leaf angles were used in the Campbell ellipsoid leaf angle distribution function of PROSAIL. A Lookup table (LUT) is generated by running the PROSAIL model with inferred leaf angles, and the cost function is minimized to retrieve LAI. The results show that the leaf angle distribution functions are different for the corn plants at different phenological growing stages, and the incorporation of derived specific corn leaf angle distribution functions distribute the improvement of LAI retrieval using the PROSAIL model. This validation is done using in-situ LAI measurements and MODIS LAI in Baoding City, Hebei Province, China, and compared with the LAI retrieved using default leaf angle distribution function at the same time. The root-mean-square error (RMSE) between the retrieved LAI on 4 September 2014, using the modified PROSAIL model and the in-situ measured LAI was 0.31 m2/m2, with a strong and significant correlation (R2 = 0.82, residual range = 0 to 0.6 m2/m2, p < 0.001). Comparatively, the accuracy of LAI retrieved results using default leaf angle distribution is lower, the RMSE of which is 0.56 with R2 = 0.76 and residual range = 0 to 1.0 m2/m2, p < 0.001. This validation reveals that the introduction of inferred leaf angle distributions from TLS data points can improve the LAI retrieval accuracy using the PROSAIL model. Moreover, the comparations of LAI retrieval results on 10 July, 26 July, 19 August and 4 September with default and inferred corn leaf angle distribution functions are all compared with MODIS LAI products in the whole study area. This validation reveals that improvement exists in a wide spatial range and temporal range. All the comparisons demonstrate the potential of the modified PROSAIL model for retrieving corn canopy LAI from Landsat imagery by inferring leaf orientation from terrestrial laser scanning data.


Plant Methods ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Mark Müller-Linow ◽  
Francisco Pinto-Espinosa ◽  
Hanno Scharr ◽  
Uwe Rascher

Sign in / Sign up

Export Citation Format

Share Document