scholarly journals SPATIAL AND TEMPORAL CHANGES OF AEROSOL OPTICAL DEPTH AND ITS DRIVING FACTORS BASED ON MODIS IN JIANGSU PROVINCE

Author(s):  
C. Jiang ◽  
Q. Xu ◽  
Y. K. Gu ◽  
X. Y. Qian ◽  
J. N. He

Aerosol Optical Depth (AOD) is of great value for studying air mass and its changes. In this paper, we studied the spatial-temporal changes of AOD and its driving factors based on spatial autocorrelation model, gravity model and multiple regression analysis in Jiangsu Province from 2007 to 2016. The results showed that in terms of spatial distribution, the southern AOD value is higher, and the high-value aggregation areas are significant, while the northern AOD value is lower, but the low-value aggregation areas constantly change. The AOD gravity centers showed a clear point-like aggregation. In terms of temporal changes, the overall AOD in Jiangsu Province increased year by year in fluctuation. In terms of driving factors, the total amount of vehicles, precipitation and temperature are important factors for the growth of AOD.

Author(s):  
G. I. Gorchakov ◽  
S. A. Sitnov ◽  
A. V. Karpov ◽  
I. A. Gorchakova ◽  
R. A. Gushchin ◽  
...  

Using maximum aerosol optical depth (MAOD) spatial distribution formation technique the optically dense haze expansion scales in period from 15 to 31 July 2016 over Eurasia are estimated in during great Siberian smoke haze (SSH) with the area 16 mln km2 about, smog over the Northern China Plain (2 mln km2), dust haze in Takla Makan desert (0.8 mln km2) and hazes in India and Pakistan (1 mln km2 approximately). Empirical distribution function (EDF) MAOD is received which is approximated by linear function of MAOD logarithm. Aerosol optical depth (AOD) spatial distribution at wavelength 550 nm in SSH is analyzed. Total smoke aerosol mass assessment in SSH (3.2 mln tons) is evaluated. Smoke aerosol (SA) mass during maximum growth period from 22 July to 26 July 2016 over Siberia (50°-70°, 60°-120 °E) was equal 2 mln tons approximately. Aerosol index (AI) temporal variability is illustrated visually SA composition qualitative change in SSH during long-range transport. It is shown that AI variations are correlated with AOD variations. Aerosol radiative forcing (ARF) at the top and the bottom of the atmosphere over Siberia from 22 July to 26 July 2016 is estimated (average ARF are equal –68 and –98 W/m2). EDF AOD and EDF ARF at the top of the atmosphere are approximated by exponential and power function of AOD correspondingly.


2018 ◽  
Vol 10 (7) ◽  
pp. 1064 ◽  
Author(s):  
Wenmin Qin ◽  
Ying Liu ◽  
Lunche Wang ◽  
Aiwen Lin ◽  
Xiangao Xia ◽  
...  

2014 ◽  
Author(s):  
Sergey M. Sakerin ◽  
Dmitry M. Kabanov ◽  
Vasily V. Polkin ◽  
Aleksander N. Prakhov ◽  
Konstantin A. Shmirko

2015 ◽  
Vol 8 (9) ◽  
pp. 3831-3849 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
O. Torres ◽  
J. F. de Haan

Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3 %, respectively, which was the case for the majority of the pixels considered in our study; 70 % had cloud radiance fraction below 30 %, and 50 % had effective cloud pressure greater than 800 hPa. Pixels with effective cloud radiance fraction greater than 30 % or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of an opaque effective cloud underestimates the altitude-resolved AMF; tropospheric AMFs were on average 30–50 % larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of 2. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear-sky pixels.


2018 ◽  
Vol 18 (17) ◽  
pp. 12891-12913 ◽  
Author(s):  
Mariel D. Friberg ◽  
Ralph A. Kahn ◽  
James A. Limbacher ◽  
K. Wyat Appel ◽  
James A. Mulholland

Abstract. Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality characterization by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale estimates of PM2.5, its major chemical component species estimates, and related uncertainty estimates of chemical transport model (CTM; e.g., the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System's Terra satellite. The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that train statistical regression models, the technique developed here leverages CTM physical constraints such as the conservation of aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships between observed species concentrations and emission sources.Aerosol air mass types over populated regions of central California are characterized using satellite data acquired during the 2013 San Joaquin field deployment of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project. We investigate the optimal application of incorporating 275 m horizontal-resolution aerosol air-mass-type maps and total-column aerosol optical depth from the MISR Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM2.5 fields progressively downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R2 and RMSE values for the model, constrained by both satellite and surface monitor measurements based on 10-fold cross-validation, are 0.79 and 0.33 for PM2.5, 0.88 and 0.65 for NO3−, 0.78 and 0.23 for SO42−, 1.00 and 1.01 for NH4+, 0.73 and 0.23 for OC, and 0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based PM2.5 improve by 30 % and 13 %, respectively, in comparison to unconstrained CTM simulations and provide finer spatial resolution. SO42− cross-validation values showed the largest spatial and spatiotemporal R2 improvement, with a 43 % increase. Assessing this physical technique in a well-instrumented region opens the possibility of applying it globally, especially over areas where surface air quality measurements are scarce or entirely absent.


2018 ◽  
Vol 18 (5) ◽  
pp. 3185-3201 ◽  
Author(s):  
Stelios Kazadzis ◽  
Natalia Kouremeti ◽  
Henri Diémoz ◽  
Julian Gröbner ◽  
Bruce W. Forgan ◽  
...  

Abstract. This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.


2016 ◽  
Author(s):  
Thomas Carlund ◽  
Natalia Kouremeti ◽  
Stelios Kazadzis ◽  
Julian Gröbner

Abstract. The determination of aerosol properties, especially the aerosol optical depth (AOD) in the UV wavelength region is of great importance to understand the climatological variability of UV radiation. However, operational retrievals of AOD at the biological most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) from Langley plot calibrations underestimate the true extra-terrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument spectral response functions also result in an apparent airmass dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore developed. Langley calibrations performed 13–14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a standard PFR, measuring AOD at 368–862 nm wavelengths with high accuracy, showed consistent results. Also very good agreement was achieved comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB are higher than the ones reported from UVA and visible AOD measuring instruments. However, the precision can be high between instruments using harmonized algorithms for ozone and Rayleigh optical depth as well as for air mass terms. For several months of comparison measurements with the UVPFR and a Brewer the root mean squared AOD differences were


Sign in / Sign up

Export Citation Format

Share Document