scholarly journals AUTOMATIC OBJECT SEGMENTATION TO SUPPORT CRISIS MANAGEMENT OF LARGE-SCALE EVENTS

Author(s):  
S. M. Azimi ◽  
R. Kiefl ◽  
V. Gstaiger ◽  
R. Bahmanyar ◽  
N. Merkle ◽  
...  

Abstract. The management of large-scale events with a widely distributed camping area is a special challenge for organisers and security forces and requires both comprehensive preparation and attentive monitoring to ensure the safety of the participants. Crucial to this is the availability of up-to-date situational information, e.g. from remote sensing data. In particular, information on the number and distribution of people is important in the event of a crisis in order to be able to react quickly and effectively manage the corresponding rescue and supply logistics. One way to estimate the number of persons especially at night is to classify the type and size of objects such as tents and vehicles on site and to distinguish between objects with and without a sleeping function. In order to make this information available in a timely manner, an automated situation assessment is required. In this work, we have prepared the first high-quality dataset in order to address the aforementioned challenge which contains aerial images over a large-scale festival of different dates. We investigate the feasibility of this task using Convolutional Neural Networks for instance-wise semantic segmentation and carry out several experiments using the Mask-RCNN algorithm and evaluate the results. Results are promising and indicate the possibility of function-based tent classification as a proof-of-concept. The results and thereof discussions can pave the way for future developments and investigations.

2020 ◽  
Author(s):  
Matheus B. Pereira ◽  
Jefersson Alex Dos Santos

High-resolution aerial images are usually not accessible or affordable. On the other hand, low-resolution remote sensing data is easily found in public open repositories. The problem is that the low-resolution representation can compromise pattern recognition algorithms, especially semantic segmentation. In this M.Sc. dissertation1 , we design two frameworks in order to evaluate the effectiveness of super-resolution in the semantic segmentation of low-resolution remote sensing images. We carried out an extensive set of experiments on different remote sensing datasets. The results show that super-resolution is effective to improve semantic segmentation performance on low-resolution aerial imagery, outperforming unsupervised interpolation and achieving semantic segmentation results comparable to highresolution data.


2020 ◽  
Vol 12 (22) ◽  
pp. 3743
Author(s):  
Miguel-Ángel Manso-Callejo ◽  
Calimanut-Ionut Cira ◽  
Ramón Alcarria ◽  
José-Juan Arranz-Justel

Updating the mapping of wind turbines farms—found in constant expansion—is important to predict energy production or to minimize the risk of these infrastructures during storms. This geoinformation is not usually provided by public mapping agencies, and the alternative sources are usually consortiums or individuals interested in mapping and study. However, they do not offer metadata or genealogy, and their quality is unknown. This article presents a methodology oriented to optimize the recognition and extraction of features (wind turbines) using hybrid architectures of semantic segmentation. The aim is to characterize the quality of these datasets and help to improve and update them automatically at a large-scale. To this end, we intend to evaluate the capacity of hybrid semantic segmentation networks trained to extract features representing wind turbines from high-resolution images and to characterize the positional accuracy and completeness of a dataset whose genealogy and quality are unknown. We built a training dataset composed of 5140 tiles of aerial images and their cartography to train six different neural network architectures. The networks were evaluated on five test areas (covering 520 km2 of the Spanish territory) to identify the best segmentation architecture (in our case, LinkNet as base architecture and EfficientNet-b3 as the backbone). This hybrid segmentation model allowed us to characterize the completeness—both by commission and by omission—of the available georeferenced wind turbine dataset, as well as its geometric quality.


2021 ◽  
Vol 13 (18) ◽  
pp. 3710
Author(s):  
Abolfazl Abdollahi ◽  
Biswajeet Pradhan ◽  
Nagesh Shukla ◽  
Subrata Chakraborty ◽  
Abdullah Alamri

Terrestrial features extraction, such as roads and buildings from aerial images using an automatic system, has many usages in an extensive range of fields, including disaster management, change detection, land cover assessment, and urban planning. This task is commonly tough because of complex scenes, such as urban scenes, where buildings and road objects are surrounded by shadows, vehicles, trees, etc., which appear in heterogeneous forms with lower inter-class and higher intra-class contrasts. Moreover, such extraction is time-consuming and expensive to perform by human specialists manually. Deep convolutional models have displayed considerable performance for feature segmentation from remote sensing data in the recent years. However, for the large and continuous area of obstructions, most of these techniques still cannot detect road and building well. Hence, this work’s principal goal is to introduce two novel deep convolutional models based on UNet family for multi-object segmentation, such as roads and buildings from aerial imagery. We focused on buildings and road networks because these objects constitute a huge part of the urban areas. The presented models are called multi-level context gating UNet (MCG-UNet) and bi-directional ConvLSTM UNet model (BCL-UNet). The proposed methods have the same advantages as the UNet model, the mechanism of densely connected convolutions, bi-directional ConvLSTM, and squeeze and excitation module to produce the segmentation maps with a high resolution and maintain the boundary information even under complicated backgrounds. Additionally, we implemented a basic efficient loss function called boundary-aware loss (BAL) that allowed a network to concentrate on hard semantic segmentation regions, such as overlapping areas, small objects, sophisticated objects, and boundaries of objects, and produce high-quality segmentation maps. The presented networks were tested on the Massachusetts building and road datasets. The MCG-UNet improved the average F1 accuracy by 1.85%, and 1.19% and 6.67% and 5.11% compared with UNet and BCL-UNet for road and building extraction, respectively. Additionally, the presented MCG-UNet and BCL-UNet networks were compared with other state-of-the-art deep learning-based networks, and the results proved the superiority of the networks in multi-object segmentation tasks.


2020 ◽  
Vol 70 ◽  
pp. 181-206
Author(s):  
Toby C. Wilkinson ◽  
Anja Slawisch

AbstractExamination of a number of satellite and aerial images of the Milesian peninsula has allowed the mapping of a large number of apparently ancient linear features across the landscape. These are here interpreted, for the most part, as relicts of agro-economic field systems of unknown date, but most plausibly established during the Archaic, Hellenistic or late antique periods and perhaps used for centuries after, before the economic decline of the region in the second millennium AD. While earlier survey work has noted the existence of terracing and rural divisions at certain points in the landscape, the new remote-sensing data have provided an unprecedented large-scale insight into the extent and variety of forms of division, as well as documenting the stripping of macquis overgrowth by modern farming practices, which has, on the one hand, exposed these ancient landscapes but also, on the other, poses a threat to their preservation. The extent of the linear features suggests a high degree of land use on the peninsula at certain points in the past. Further investigation of these important features has the potential to provide critical insights into the economic history of rural and urban Miletos over the last 2,000 to 5,000 years.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3813
Author(s):  
Athanasios Anagnostis ◽  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Vasileios Moysiadis ◽  
Claus Grøn Sørensen ◽  
...  

This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.


2021 ◽  
pp. 100057
Author(s):  
Peiran Li ◽  
Haoran Zhang ◽  
Zhiling Guo ◽  
Suxing Lyu ◽  
Jinyu Chen ◽  
...  

2012 ◽  
Vol 37 (4) ◽  
pp. 168-171 ◽  
Author(s):  
Birutė Ruzgienė ◽  
Qian Yi Xiang ◽  
Silvija Gečytė

The rectification of high resolution digital aerial images or satellite imagery employed for large scale city mapping is modern technology that needs well distributed and accurately defined control points. Digital satellite imagery, obtained using widely known software Google Earth, can be applied for accurate city map construction. The method of five control points is suggested for imagery rectification introducing the algorithm offered by Prof. Ruan Wei (tong ji University, Shanghai). Image rectification software created on the basis of the above suggested algorithm can correct image deformation with required accuracy, is reliable and keeps advantages in flexibility. Experimental research on testing the applied technology has been executed using GeoEye imagery with Google Earth builder over the city of Vilnius. Orthophoto maps at the scales of 1:1000 and 1:500 are generated referring to the methodology of five control points. Reference data and rectification results are checked comparing with those received from processing digital aerial images using a digital photogrammetry approach. The image rectification process applying the investigated method takes a short period of time (about 4-5 minutes) and uses only five control points. The accuracy of the created models satisfies requirements for large scale mapping. Santrauka Didelės skiriamosios gebos skaitmeninių nuotraukų ir kosminių nuotraukų rektifikavimas miestams kartografuoti stambiuoju masteliu yra nauja technologija. Tai atliekant būtini tikslūs ir aiškiai matomi kontroliniai taškai. Skaitmeninės kosminės nuotraukos, gautos taikant plačiai žinomą programinį paketą Google Earth, gali būti naudojamos miestams kartografuoti dideliu tikslumu. Siūloma nuotraukas rektifikuoti Penkių kontrolinių taskų metodu pagal prof. Ruan Wei (Tong Ji universitetas, Šanchajus) algoritmą. Moksliniam eksperimentui pasirinkta Vilniaus GeoEye nuotrauka iš Google Earth. 1:1000 ir 1:500 mastelio ortofotografiniai žemėlapiai sudaromi Penkių kontrolinių taškų metodu. Rektifikavimo duomenys lyginami su skaitmeninių nuotraukų apdorojimo rezultatais, gautais skaitmeninės fotogrametrijos metodu. Nuotraukų rektifikavimas Penkių kontrolinių taskų metodu atitinka kartografavimo stambiuoju masteliu reikalavimus, sumažėja laiko sąnaudos. Резюме Ректификация цифровых и космических снимков высокой резолюции для крупномасштабного картографирования является новой технологией, требующей точных и четких контрольных точек. Цифровые космические снимки, полученные с использованием широкоизвестного программного пакета Google Earth, могут применяться для точного картографирования городов. Для ректификации снимков предложен метод пяти контрольных точек с применением алгоритма проф. Ruan Wei (Университет Tong Ji, Шанхай). Для научного эксперимента использован снимок города Вильнюса GeoEye из Google Earth. Ортофотографические карты в масштабе 1:1000 и 1:500 генерируются с применением метода пяти контрольных точек. Полученные результаты и данные ректификации сравниваются с результатами цифровых снимков, полученных с применением метода цифровой фотограмметрии. Ректификация снимков с применением метода пяти контрольных точек уменьшает временные расходы и удовлетворяет требования, предъявляемые к крупномасштабному картографированию.


Author(s):  
Ruigang Niu ◽  
Xian Sun ◽  
Yu Tian ◽  
Wenhui Diao ◽  
Kaiqiang Chen ◽  
...  

2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


Sign in / Sign up

Export Citation Format

Share Document