scholarly journals A REVIEW OF SURGE-TYPE GLACIERS

Author(s):  
Z. Sun ◽  
G. Qiao

Abstract. The study of glacier surges is meaningful for the understanding of glacier dynamics and the mechanisms of surge-type glaciers. Here, we briefly introduce the distribution of surge-type glaciers and the reason of their tendency to cluster within particular regions. Then we make a review of optical and SAR remote sensing methods for the spaceborne measurement of the surface velocity about surge-type glaciers and show the details of characteristics of Surging Glaciers including the acceleration and deceleration of the velocity of the glacier surface, the terminus may move forward a few kilometers in just a few months, then we give a specific example of surge-type glacier, Sortebræ. Finally, we summarize the existing mechanism of the glaciers surging.

2017 ◽  
Vol 9 (10) ◽  
pp. 1062 ◽  
Author(s):  
Christine Lüttig ◽  
Niklas Neckel ◽  
Angelika Humbert

2015 ◽  
Vol 40 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Lydia Sam ◽  
Anshuman Bhardwaj ◽  
Shaktiman Singh ◽  
Rajesh Kumar

Changes in ice velocity of a glacier regulate its mass balance and dynamics. The estimation of glacier flow velocity is therefore an important aspect of temporal glacier monitoring. The utilisation of conventional ground-based techniques for detecting glacier surface flow velocity in the rugged and alpine Himalayan terrain is extremely difficult. Remote sensing-based techniques can provide such observations on a regular basis for a large geographical area. Obtaining freely available high quality remote sensing data for the Himalayan regions is challenging. In the present work, we adopted a differential band composite approach, for the first time, in order to estimate glacier surface velocity for non-debris and supraglacial debris covered areas of a glacier, separately. We employed various bandwidths of the Landsat 8 data for velocity estimation using the COSI-Corr (co-registration of optically sensed images and correlation) tool. We performed the accuracy assessment with respect to field measurements for two glaciers in the Indian Himalaya. The panchromatic band worked best for non-debris parts of the glaciers while band 6 (SWIR – short wave infrared) performed best in case of debris cover. We correlated six temporal Landsat 8 scenes in order to ensure the performance of the proposed algorithm on monthly as well as yearly timescales. We identified sources of error and generated a final velocity map along with the flow lines. Over- and underestimates of the yearly glacier velocity were found to be more in the case of slow moving areas with annual displacements less than 5 m. Landsat 8 has great capabilities for such velocity estimation work for a large geographic extent because of its global coverage, improved spectral and radiometric resolutions, free availability and considerable revisit time.


2020 ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

<p>Glaciers in High Mountain Asia have experienced intense scientific scrutiny in the past decade due to their hydrological and societal importance. The explosion of freely-available satellite observations has greatly advanced our understanding of their thinning, motion, and overall mass losses, and it has become clear that they exhibit both local and regional variations due to debris cover, surging and climatic regime. However, our understanding of glacier accumulation and ablation rates is limited to a few individual sites, and altitudinal surface mass balance is essentially unknown across the vast region.</p><p>Here we combine recent assessments of ice thickness and surface velocity to correct observed glacier thinning rates for mass redistribution in a flowband framework to derive the first estimates of altitudinal glacier surface mass balance across the region. We first evaluate our results at the glacier scale with all available glaciological field measurements (27 glaciers), then analyze 4665 glaciers (we exclude surging and other anomalous glaciers) comprising 43% of area and 36% of mass for glaciers larger than 2 km<sup>2</sup> in the region. The surface mass balance results allow us to determine the equilibrium line altitude for each glacier for the period 2000-2016.  We then aggregate our altitudinal and hypsometric surface mass balance results to produce idealised profiles for distinct subregions, enabling us to consider the subregional heterogeneity of mass balance and the importance of debris-covered ice for the region’s overall ablation.</p><p>We find clear patterns of ELA variability across the region.  9% of glaciers accumulate mass over less than 10% of their area on average for the study period. These doomed  glaciers are concentrated in Nyainqentanglha, which also has the most negative mass balance of the subregions, whereas accumulation area ratios of 0.7-0.9 are common for glaciers in the neutral-balance Karakoram and Kunlun Shan. We find that surface debris extent is negatively correlated with ELA, explaining up to 1000 m of variability across the region and reflecting the importance of avalanching as a mass input for debris-covered glaciers at lower elevations. However, in contrast with studies of thinning rates alone, we find a clear melt reduction for low-elevation debris-covered glacier areas, consistent across regions, largely resolving the ‘debris cover anomaly’.  </p><p>Our results provide a comprehensive baseline for the health of the High Asian ice reservoirs in the early 21<sup>st</sup> Century. The estimates of altitudinal surface mass balance and ELAs will additionally enable novel strategies for the calibration of glacier and hydrological models. Finally, our results emphasize the potential of combined remote-sensing observations to understand the environmental factors and physical processes responsible for High Asia’s heterogeneous patterns of recent glacier evolution.</p>


2021 ◽  
Vol 15 (1) ◽  
pp. 407-429
Author(s):  
Bryan Riel ◽  
Brent Minchew ◽  
Ian Joughin

Abstract. The recent influx of remote sensing data provides new opportunities for quantifying spatiotemporal variations in glacier surface velocity and elevation fields. Here, we introduce a flexible time series reconstruction and decomposition technique for forming continuous, time-dependent surface velocity and elevation fields from discontinuous data and partitioning these time series into short- and long-term variations. The time series reconstruction consists of a sparsity-regularized least-squares regression for modeling time series as a linear combination of generic basis functions of multiple temporal scales, allowing us to capture complex variations in the data using simple functions. We apply this method to the multitemporal evolution of Sermeq Kujalleq (Jakobshavn Isbræ), Greenland. Using 555 ice velocity maps generated by the Greenland Ice Mapping Project and covering the period 2009–2019, we show that the amplification in seasonal velocity variations in 2012–2016 was coincident with a longer-term speedup initiating in 2012. Similarly, the reduction in post-2017 seasonal velocity variations was coincident with a longer-term slowdown initiating around 2017. To understand how these perturbations propagate through the glacier, we introduce an approach for quantifying the spatially varying and frequency-dependent phase velocities and attenuation length scales of the resulting traveling waves. We hypothesize that these traveling waves are predominantly kinematic waves based on their long periods, coincident changes in surface velocity and elevation, and connection with variations in the terminus position. This ability to quantify wave propagation enables an entirely new framework for studying glacier dynamics using remote sensing data.


2012 ◽  
Vol 6 (1) ◽  
pp. 85-100 ◽  
Author(s):  
K. A. Casey ◽  
A. Kääb ◽  
D. I. Benn

Abstract. Surface glacier debris samples and field spectra were collected from the ablation zones of Nepal Himalaya Ngozumpa and Khumbu glaciers in November and December 2009. Geochemical and mineral compositions of supraglacial debris were determined by X-ray diffraction and X-ray fluorescence spectroscopy. This composition data was used as ground truth in evaluating field spectra and satellite supraglacial debris composition and mapping methods. Satellite remote sensing methods for characterizing glacial surface debris include visible to thermal infrared hyper- and multispectral reflectance and emission signature identification, semi-quantitative mineral abundance indicies and spectral image composites. Satellite derived supraglacial debris mineral maps displayed the predominance of layered silicates, hydroxyl-bearing and calcite minerals on Khumbu Himalayan glaciers. Supraglacial mineral maps compared with satellite thermal data revealed correlations between glacier surface composition and glacier surface temperature. Glacier velocity displacement fields and shortwave, thermal infrared false color composites indicated the magnitude of mass flux at glacier confluences. The supraglacial debris mapping methods presented in this study can be used on a broader scale to improve, supplement and potentially reduce errors associated with glacier debris radiative property, composition, areal extent and mass flux quantifications.


2013 ◽  
Vol 54 (63) ◽  
pp. 299-310 ◽  
Author(s):  
Wanqin Guo ◽  
Shiyin Liu ◽  
Junfeng Wei ◽  
Weijia Bao

AbstractThe 2008/09 surge of central Yulinchuan glacier (CYG) on the northwestern slope of Muztag mountain, Tibetan Plateau, is studied based on satellite remote sensing. The widely used cross-correlation feature-tracking method was used to collect satellite image control points and validate their geometric accuracies, as well as to derive glacier surface velocity. Changes in glacier length and area were also retrieved. Results show that the surge of CYG initiated in May 2008 and terminated in July 2009. Two diffluent glacier termini advanced 590 ± 26 m (5.1 ± 0.2% of the 2004 length) and 182 ± 26m (1.8 ± 0.3%), respectively, and glacier area increased by ∼1.41 ± 0.11 km2 (4.6 ± 0.4% of the 2004 area) during this period. The most significant surge period was October 2008 to March 2009, when most of the terminus advances and area increases occurred. The glacier surface drastically crevassed during this time, as much as 1657 ± 297 m of horizontal surface displacements were produced by surge ice, and maximum surface speed reached 13 ± 1.5 m d-1. Results of transverse and longitudinal velocity profiles revealed two surge waves during this surge of CYG.


2020 ◽  
Author(s):  
Bryan Riel ◽  
Brent Minchew ◽  
Ian Joughin

Abstract. The recent influx of remote sensing data provides new opportunities for quantifying spatiotemporal variations in glacier surface velocity and elevation fields. Here, we introduce a flexible time series reconstruction and decomposition technique for forming continuous, time-dependent surface velocity and elevation fields from discontinuous data and partitioning these time series into short- and long-term variations. The time series reconstruction consists of a sparsity-regularized least squares regression for modeling time series as a linear combination of generic basis functions of multiple temporal scales, allowing us to capture complex variations in the data using simple functions. We apply this method to the multitemporal evolution of Sermeq Kujalleq (Jakobshavn Isbrae), Greenland. Using 555 ice velocity maps generated by the Greenland Ice Mapping Project and covering the period 2009–2019, we show that the amplification in seasonal velocity variations in 2012–2016 was coincident with a longer-term speedup initiating in 2012. Similarly, the reduction in post-2017 seasonal velocity variations was coincident with a longer-term slowdown initiating around 2017. To understand how these perturbations propagate through the glacier, we introduce an approach for quantifying the spatially varying and frequency-dependent phase velocities and attenuation length scales of the resulting traveling waves. We hypothesize that these traveling waves are predominantly kinematic waves based on their long periods, coincident changes in surface velocity and elevation, and connection with variations in the terminus position. This ability to quantify wave propagation enables an entirely new framework for studying glacier dynamics using remote sensing data.


2021 ◽  
Author(s):  
Gregoire Guillet ◽  
Owen King ◽  
Mingyang Lv ◽  
Sajid Ghuffar ◽  
Douglas Benn ◽  
...  

Abstract. Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier related hazards. One of the "super-clusters" of surge-type glaciers is the mountains of Asia. However, no consistent region-wide inventory of surge-type glaciers in High Mountain Asia exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high resolution imagery (Bing Maps, Google Earth). Out of the ≈ 95000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length. We validate 107 previously identified glaciers as surge-type and newly identify 491 glaciers. We finally discuss the possibility of self-organized criticality in glacier surges.


Sign in / Sign up

Export Citation Format

Share Document