scholarly journals UPSCALING AND VALIDATION OF RTK-DIRECT GEOREFERENCED UAV-BASED RGB IMAGE DATA WITH PLANET IMAGERY USING POLYGON GRIDS FOR PASTURE MONITORING

Author(s):  
G. Bareth ◽  
C. Hütt

Abstract. The monitoring of managed grasslands with remote sensing methods is becoming more important for spatial decision support. Various remote sensing data acquisition techniques are applied for that purpose in different spatial resolutions ranging from UAV-borne to satellite-based remote sensing. In the last decade, UAV-borne imaging and analysis techniques or in the focus of crop and grassland monitoring and provide very high spatial resolutions. In contrast, satellite data are only available in high to moderate spatial resolutions. In this contribution, we introduce direct georeferenced data acquisition with a Phantom 4 RTK for pasture monitoring and investigate the upscaling of the cm data to satellite resolutions using polygon grids.

2021 ◽  
Vol 13 (14) ◽  
pp. 2818
Author(s):  
Hai Sun ◽  
Xiaoyi Dai ◽  
Wenchi Shou ◽  
Jun Wang ◽  
Xuejing Ruan

Timely acquisition of spatial flood distribution is an essential basis for flood-disaster monitoring and management. Remote-sensing data have been widely used in water-body surveys. However, due to the cloudy weather and complex geomorphic environment, the inability to receive remote-sensing images throughout the day has resulted in some data being missing and unable to provide dynamic and continuous flood inundation process data. To fully and effectively use remote-sensing data, we developed a new decision support system for integrated flood inundation management based on limited and intermittent remote-sensing data. Firstly, we established a new multi-scale water-extraction convolutional neural network named DEU-Net to extract water from remote-sensing images automatically. A specific datasets training method was created for typical region types to separate the water body from the confusing surface features more accurately. Secondly, we built a waterfront contour active tracking model to implicitly describe the flood movement interface. In this way, the flooding process was converted into the numerical solution of the partial differential equation of the boundary function. Space upwind difference format and the time Euler difference format were used to perform the numerical solution. Finally, we established seven indicators that considered regional characteristics and flood-inundation attributes to evaluate flood-disaster losses. The cloud model using the entropy weight method was introduced to account for uncertainties in various parameters. In the end, a decision support system realizing the flood losses risk visualization was developed by using the ArcGIS application programming interface (API). To verify the effectiveness of the model constructed in this paper, we conducted numerical experiments on the model's performance through comparative experiments based on a laboratory scale and actual scale, respectively. The results were as follows: (1) The DEU-Net method had a better capability to accurately extract various water bodies, such as urban water bodies, open-air ponds, plateau lakes etc., than the other comparison methods. (2) The simulation results of the active tracking model had good temporal and spatial consistency with the image extraction results and actual statistical data compared with the synthetic observation data. (3) The application results showed that the system has high computational efficiency and noticeable visualization effects. The research results may provide a scientific basis for the emergency-response decision-making of flood disasters, especially in data-sparse regions.


Author(s):  
D. R. M. Samudraiah ◽  
M. Saxena ◽  
S. Paul ◽  
P. Narayanababu ◽  
S. Kuriakose ◽  
...  

The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band sounder for providing vertical profile of water vapour, temperature, etc. The same system has data relay transponders for acquiring data from weather stations. The payload configurations have gone through significant changes over the years to increase data rate per kilogram of payload. Future Indian remote sensing systems are planned with very high efficient ways of image acquisition. <br><br> This paper analyses the strides taken by ISRO (Indian Space research Organisation) in achieving high efficiency in remote sensing image data acquisition. Parameters related to efficiency of image data acquisition are defined and a methodology is worked out to compute the same. Some of the Indian payloads are analysed with respect to some of the system/ subsystem parameters that decide the configuration of payload. Based on the analysis, possible configuration approaches that can provide high efficiency are identified. A case study is carried out with improved configuration and the results of efficiency improvements are reported. This methodology may be used for assessing other electro-optical payloads or missions and can be extended to other types of payloads and missions.


Author(s):  
Dmytro Liashenko ◽  
◽  
Dmytro Pavliuk ◽  
Vadym Belenok ◽  
Vitalii Babii ◽  
...  

The article studies the issues of using remote sensing data for the tasks of ensuring sustainable nature management in the territories within the influence of transport infrastructure objects. Peculiarities of remote monitoring for tasks of transport networks design and in the process of their operation are determined. The paper analyzes the development of modern remote sensing methods (satellite imagery, the use of mobile sensors installed on cars or aircraft). A brief overview of spatial data collecting methods for the tasks of managing the development of territories within the influence of transport infrastructure (roads, railways, etc.) has made. The article considers the experience of using remote sensing technologies to monitor changes in the parameters of forest cover in the Transcarpathian region (Ukraine) in areas near to highways, by use Landsat imagery.


2019 ◽  
Vol 37 (1) ◽  
pp. 137-157 ◽  
Author(s):  
Danylo Malyuta ◽  
Christian Brommer ◽  
Daniel Hentzen ◽  
Thomas Stastny ◽  
Roland Siegwart ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 1530
Author(s):  
Meng Jin ◽  
Yuqi Bai ◽  
Emmanuel Devys ◽  
Liping Di

Geolocation information is an important feature of remote sensing image data that is captured through a variety of passive or active observation sensors, such as push-broom electro-optical sensor, synthetic aperture radar (SAR), light detection and ranging (LIDAR) and sound navigation and ranging (SONAR). As a fundamental processing step to locate an image, geo-positioning is used to determine the ground coordinates of an object from image coordinates. A variety of sensor models have been created to describe geo-positioning process. In particular, Open Geospatial Consortium (OGC) has defined the Sensor Model Language (SensorML) specification in its Sensor Web Enablement (SWE) initiative to describe sensors including the geo-positioning process. It has been realized using syntax from the extensible markup language (XML). Besides, two standards defined by the International Organization for Standardization (ISO), ISO 19130-1 and ISO 19130-2, introduced a physical sensor model, a true replacement model, and a correspondence model for the geo-positioning process. However, a standardized encoding for geo-positioning sensor models is still missing for the remote sensing community. Thus, the interoperability of remote sensing data between application systems cannot be ensured. In this paper, a standardized encoding of remote sensing geo-positioning sensor models is introduced. It is semantically based on ISO 19130-1 and ISO 19130-2, and syntactically based on OGC SensorML. It defines a cross mapping of the sensor models defined in ISO 19130-1 and ISO 19130-2 to the SensorML, and then proposes a detailed encoding method to finalize the XML schema (an XML schema here is the structure to define an XML document), which will become a profile of OGC SensorML. It seamlessly unifies the sensor models defined in ISO 19130-1, ISO 19130-2, and OGC SensorML. By enabling a standardized description of sensor models used to produce remote sensing data, this standard is very promising in promoting data interoperability, mobility, and integration in the remote sensing domain.


2017 ◽  
Vol 26 (8) ◽  
pp. 668 ◽  
Author(s):  
Joshua M. Johnston ◽  
Martin J. Wooster ◽  
Ronan Paugam ◽  
Xianli Wang ◽  
Timothy J. Lynham ◽  
...  

Byram’s fire intensity (IB,tot; kWm–1) is one the most important and widely accepted metrics for quantifying wildfire behaviour. Calculation of IB,tot requires measurement of fuel consumption, heat of combustion and rate of spread; existing methods for obtaining these measurements are either inexact or at times impossible to obtain in the field. This paper presents and evaluates a series of remote sensing methods for directly deriving radiative fire intensity (IB,rad; kWm–1) using the Fire Radiative Power (FRP) approach applied to thermal infrared imagery of spreading vegetation fires. Comparisons between the remote sensing data and ground-sampled measurements were used to evaluate the various estimates of IB,tot, and to determine the radiative fraction (radF) of a fire’s emitted energy. Results indicate that the IB,tot along an advancing flame front can be reasonably estimated (and agrees with traditional methods of estimation (R2=0.34–0.73)) from appropriately collected time-series of remote sensing imagery without the need for ground sampling or ancillary data. We further estimate that the radF of the fire’s emitted energy varies between 0.15 and 0.20 depending on the method of calculation, which is similar to previous estimates.


Sign in / Sign up

Export Citation Format

Share Document