scholarly journals PERFORMANCE OF THE SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORK CLASSIFIERS FOR ROADS IDENTIFICATION

Author(s):  
A. C. Andrade ◽  
M. J. Alixandrini Jr. ◽  
F. P. S. Carvalho ◽  
V. O. Fernandes

Abstract. The objective of this project was to compare two non-parametric classification methods (“Support Vector Machine” – SVM and “Artificial Neural Networks” – ANN) of road regions in high spatial resolution images and associated with data from Airborne Laser Scanning. The study aims to verify what kind of influence the layers of attributes have on the performance from respective classifiers: SVM and RNA. Our method based on tests of this classifiers on 4 bands of airborne images and normalization of the digital surface model (DSM) for showing only information on objects height in relation to ground and not of these in relation to the ground and relief, generating band 5. The samples were used to train chosen non-parametric classifiers (training sets for each different input image/landscape). All classifications had the same set of training samples and the same classification parameters. The optimal parameters for classifications were obtained through the existing library in the Weka mining package: LibSVM and LibMultiLayerPerceptron. Our results demonstrated the existence of a direct relationship between the elevation band of the targets in relation to the terrain (band 05) with the improvement of their performance and lower degree of between bands correlation can also be considered a factor that has a positive influence. As for Neural Networks, the experiment results demonstrate that the presence of the near infrared band (band 04) was decisive for the performance improving of certain combinations in relation to others.

2018 ◽  
Vol 184 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Gal Amit ◽  
Hanan Datz

Abstract We present here for the first time a fast and reliable automatic algorithm based on artificial neural networks for the anomaly detection of a thermoluminescence dosemeter (TLD) glow curves (GCs), and compare its performance with formerly developed support vector machine method. The GC shape of TLD depends on numerous physical parameters, which may significantly affect it. When integrated into a dosimetry laboratory, this automatic algorithm can classify ‘anomalous’ (having any kind of anomaly) GCs for manual review, and ‘regular’ (acceptable) GCs for automatic analysis. The new algorithm performance is then compared with two kinds of formerly developed support vector machine classifiers—regular and weighted ones—using three different metrics. Results show an impressive accuracy rate of 97% for TLD GCs that are correctly classified to either of the classes.


Author(s):  
Sajid Umair ◽  
Muhammad Majid Sharif

Prediction of student performance on the basis of habits has been a very important research topic in academics. Studies show that selection of the correct data set also plays a vital role in these predictions. In this chapter, the authors took data from different schools that contains student habits and their comments, analyzed it using latent semantic analysis to get semantics, and then used support vector machine to classify the data into two classes, important for prediction and not important. Finally, they used artificial neural networks to predict the grades of students. Regression was also used to predict data coming from support vector machine, while giving only the important data for prediction.


2016 ◽  
Vol 75 (8) ◽  
Author(s):  
Mohammad Ali Ghorbani ◽  
Rahman Khatibi ◽  
Arun Goel ◽  
Mohammad Hasan FazeliFard ◽  
Atefeh Azani

Sign in / Sign up

Export Citation Format

Share Document