scholarly journals DETERMINING SMART INTERSECTIONS FOR SMART CITY APPLICATIONS USING MULTI-CRITERIA DECISION-MAKING TECHNIQUES

Author(s):  
T. Urfalı ◽  
A. Eymen

Abstract. Urbanization process occurs unprecedentedly all round the world. Increase in population accompanies energy need, environmental issues and transportation problems. In order to manage urban growth which causes complication and to enhance the quality of life, we need to find new solutions. During the recent years, smart cities which solve their problems become popular thanks to integration between reformed technology and expanding cities. Primarily, it requires that smart city should be effective spatially. Due to these reasons, to have an investment to the area of requirement properly is extremely important with regard to cost and recovery in order to benefit from smart city applications ultimately and also to achieve high efficiency from this high budget investment. In this study, the criteria affecting the location of the intersections where the smart intersection system will be applied according to the current situation in Kayseri province by using the multi-criteria decision making method were examined. With these effective solutions, smart transportation will provide high functionality and a more efficient flow. At the same time, this study will help decision-makers in planning and investments.


Author(s):  
C. Ellul ◽  
V. Coors ◽  
S. Zlatanova ◽  
R. Laurini ◽  
M. Rumor

<p><strong>Abstract.</strong> Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.</p><p> This increasing interest in Smart Cities world-wide, along with a growing understanding of the importance of integrating “Smart” data with other data and wider applications for the benefit of citizens, made the choice of hosting the third Smart Data, Smart Cities conference in Delft – in conjunction with three other conferences – a very natural one. Together the four conferences were held during the week of 1st–5th October 2018, and alongside SDSC participants were invited to attend the ISPRS Technical Commission IV Symposium, the 13th 3D GeoInfo Conference and the 6th International FIG Workshop on 3D Cadastres. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2018 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and TU Delft (the Delft University of Technology), and Professor Volker Coors Chaired the SDSC committee.</p><p> As in previous years, three key conference themes were proposed to represent the Smart Cities: <b>Smart Data</b> (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), <b>Smart People</b> (volunteered information, systems for public participation) and <b>Smart Cities</b> (systems of territorial intelligence, systems for city intelligence management,3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).</p><p> This volume consists of 18 papers, which were selected from 34 submissions on the basis of double blind review, with each paper being reviewed by a minimum of three reviewers. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects of Smart Data and Smart Citizens. The selected papers tackle different aspects of Smart Cities: 3D; Citizen Engagement; transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.</p><p> The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Giorgio Agugiaro, Maria Antoniabrovelli, Ken Arroyoohori, Martina Baucic, Michela Bertolotto, Pawel Boguslawski, Azedine Boulmakoul, Caesar Cardenas, Ofelia Cervantes, Volker Coors, Isabel Cruz, Vincenzo Delfatto, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Gerhard Groeger, Eberhard Gulch, Jan-Henrik Haunert, Stephen Hirtle, Umit Isikdag, Martin Kada, Snjezana Knezic, Robert Laurini, Liu Liu, Ed Manley, Viviana Mascardi, Marco Minghini, Raul Monroy, Regina Motz, Beniamino Murgante, Marco Painho, Dev Paudyal, Alenka Poplin, Ivana Racetin, Ismail Rakip Karas, Preston Rodrigues, David Sol, Wei Tu, Wei Tu, Genoveva Vargas, Kavita Vemuri, Edward Verbree, Mingshu Wang, Maribel Yasminasantos, Sisi Zlatanova. We are also grateful to the work of the local organising committee at TU Delft, without whom this conference would not have been possible. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018 3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands</p>



Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1782 ◽  
Author(s):  
Danuta Szpilko

Global change, including population growth, economic development and climate change constitute urgent challenges for the smart cities of the 21st century. Cities need to effectively manage their development and meet challenges that have a significant impact on their economic activity, as well as health and quality of life for their citizens. In the context of continuous change, city decision-makers are constantly looking for new smart tools to tackle it. This article addresses this gap, indicating foresight as an effective tool that anticipates the future of a smart city. Its aim is to develop a methodology for planning and implementing a vision of smart city development based on foresight research. The proposed methodology consists of five stages and was developed with the use of methodology for designing hybrid systems. It is an organised, transparent and flexible process which can facilitate the development of sustainable and smart future visions of smart city development by virtue of the involvement, knowledge and experience of a large number of urban stakeholders at all stages of its creation. The article discusses in detail the operationalisation of each stage of the methodology in which the following main methods were used: megatrend analysis, factors analysis: social (S), technological (T), economic (E), ecological (E), political (P), relating to values (V) and legal (L) (STEEPVL), structural analysis, Delphi, creative visioning, scenarios and identifying actions related to the development of a smart city, divided into four categories: new, so far not undertaken (N); implemented so far, to be continued (C); redundant, to be discontinued (R); actions that have been implemented in the past and to be restored (R) (NCRR). The summary enumerates the benefits that foresight implementation can bring to the smart city.



2019 ◽  
Vol 25 (7) ◽  
pp. 673-686 ◽  
Author(s):  
Jielin Yin ◽  
Jian Guo ◽  
Tianmeng Ji ◽  
Jingru Cai ◽  
Lei Xiao ◽  
...  

The project managers’ high efficiency and leadership ability is very important for the success of the whole project. Evaluating the competency of project manager accurately and selecting the suitable project manager from alternatives is a very core research issue that should be paid high attention to in the field of project management. When evaluating the competency of project manager, multiple criteria with interactive relationship should be considered, and the decision makers may have bounded rational behavior which may have a great impact on the result of evaluation, whereas the decision makes’ psychological behavior is rarely taken into account in the existing studies on the evaluation of project managers’ competency. TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) is a multi-criteria decision making method considering the decision makers’ behavior. In this paper, an extended TODIM method which combines λ -fuzzy measure with Choquet integral considering incomplete criteria information and decision makers’ bounded rational behaviors are presented to evaluate the competency of project manager. Furthermore, a numerical example is presented to illustrate the method proposed. We hope that this method can provide some valuable references for the evaluation of project manager’s competency.



Author(s):  
V. Coors ◽  
P. Rodrigues ◽  
C. Ellul ◽  
S. Zlatanova ◽  
R. Laurini ◽  
...  

Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the “Energy, water and food for the cities of the future” conference, the “LIS-City – liveable, intelligent, and sustainable City” workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 18 papers, which were selected from 41 submissions on the basis of peer review. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects relating to Smart Data. Selected papers tackle different aspects of Smart Cities: transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible.



Author(s):  
V. Coors ◽  
P. Rodrigues ◽  
C. Ellul ◽  
S. Zlatanova ◽  
R. Laurini ◽  
...  

Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the “Energy, water and food for the cities of the future” conference, the “LIS-City – liveable, intelligent, and sustainable City” workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 14 papers, which were selected from 41 submissions on the basis of double blind review, with each paper being reviewed by a minimum of three reviewers. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects of Smart Data and Smart Citizens. The selected papers tackle different aspects of Smart Cities: 3D; Citizen Engagement; transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible.



2021 ◽  
Vol 17 (2) ◽  
pp. 61-69
Author(s):  
M. I. Ivanova

Introduction. The article discusses approaches to describing recommender systems in public administration in the context of digital transformation of smart cities. Recommender systems are information filtering and recommendation mechanisms designed to facilitate and increase the speed of decision making. The effectiveness of public administration depends on the ability of state bodies not only to promptly respond to emerging challenges, but also on the ability to foresee such situations, to develop possible scenarios for future developments based on a retrospective analysis of available data, which will become possible due to the implementation of recommendation systems in the general canvas of the state digital platforms. Despite the lack of unambiguity in understanding the concept of a smart city, the scientific community emphasizes the importance of technological infrastructures not only for the life of the urban area, but also for the process of making management decisions. The scientific corps crystallizes the idea of a smart city as a functional urban area created by means of information and communication technologies, without which it becomes impossible to manage the city in an efficient and sustainable way. Over the past 20 years, the original concept of a smart city, conceived as a way to achieve more sustainable urban development, has gradually evolved to address the problems of ineffective governance. In this context, striving to improve such aspects as the quality of life of citizens, as well as the empowerment of their rights and opportunities, the smart city becomes a kind of environment in which the citizen is the center of all services and initiatives taking place in a given territory, where the use of technology plays the most important role.Materials and methods. The methodological basis of the research is characterized by the following general scientific methods: analysis, synthesis, systemic and functional approaches.Discussion and conclusion. As a result of the study, it was revealed that recommender systems should become part of the decision-making process in the field of public administration. The question of the quality of the recommendations provided remains unresolved, since the effectiveness of the recommendation systems depends on factors that go beyond the quality of the forecasting algorithm.



Author(s):  
C. Ellul ◽  
V. Coors ◽  
S. Zlatanova ◽  
R. Laurini ◽  
M. Rumor

<p><strong>Abstract.</strong> Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.</p><p>This increasing interest in Smart Cities world-wide, along with a growing understanding of the importance of integrating “Smart” data with other data and wider applications for the benefit of citizens, made the choice of hosting the third Smart Data, Smart Cities conference in Delft &amp;ndash; in conjunction with three other conferences &amp;ndash; a very natural one. Together the four conferences were held during the week of 1st&amp;ndash;5th October 2018, and alongside SDSC participants were invited to attend the ISPRS Technical Commission IV Symposium, the 13th 3D GeoInfo Conference and the 6th International FIG Workshop on 3D Cadastres. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2018 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and TU Delft (the Delft University of Technology), and Professor Volker Coors Chaired the SDSC committee.</p><p>As in previous years, three key conference themes were proposed to represent the Smart Cities: <b>Smart Data</b> (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), <b>Smart People</b> (volunteered information, systems for public participation) and <b>Smart Cities</b> (systems of territorial intelligence, systems for city intelligence management,3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).</p><p>This volume consists of 7 papers, which were selected from 34 submissions on the basis of peer review. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects relating to Smart Data. Selected papers tackle different aspects of Smart Cities: transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.</p><p>The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Giorgio Agugiaro, Maria Antoniabrovelli, Ken Arroyoohori, Martina Baucic, Michela Bertolotto, Pawel Boguslawski, Azedine Boulmakoul, Caesar Cardenas, Ofelia Cervantes, Volker Coors, Isabel Cruz, Vincenzo Delfatto, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Gerhard Groeger, Eberhard Gulch, Jan-Henrik Haunert, Stephen Hirtle, Umit Isikdag, Martin Kada, Snjezana Knezic, Robert Laurini, Liu Liu, Ed Manley, Viviana Mascardi, Marco Minghini, Raul Monroy, Regina Motz, Beniamino Murgante, Marco Painho, Dev Paudyal, Alenka Poplin, Ivana Racetin, Ismail Rakip Karas, Preston Rodrigues, David Sol, Wei Tu, Wei Tu, Genoveva Vargas, Kavita Vemuri, Edward Verbree, Mingshu Wang, Maribel Yasminasantos, Sisi Zlatanova. We are also grateful to the work of the local organising committee at TU Delft, without whom this conference would not have been possible.</p>



2020 ◽  
Vol 18 (4) ◽  
pp. 765-779
Author(s):  
E.V. Popov ◽  
K.A. Semyachkov ◽  
K.V. Zhunusova

Subject. This article explores the basic elements of the engineering infrastructure of smart cities. Objectives. The article aims to systematize theoretical descriptions of the engineering infrastructure of a smart city. Methods. For the study, we used a logical analysis and systematization. Results. The article highlights the main areas of infrastructure development of smart cities. Conclusions. Improving process management mechanisms, optimizing urban infrastructure, increasing the use of digital technologies, and developing socio-economic innovation improve the quality of the urban environment in a digitalized environment. And improving the efficiency of urban planning and security, studying its properties and characteristics, and forming an effective urban information system lead to its functional transformations.



2021 ◽  
Vol 13 (2) ◽  
pp. 769
Author(s):  
Mona Treude

Cities are becoming digital and are aiming to be sustainable. How they are combining the two is not always apparent from the outside. What we need is a look from inside. In recent years, cities have increasingly called themselves Smart City. This can mean different things, but generally includes a look towards new digital technologies and claim that a Smart City has various advantages for its citizens, roughly in line with the demands of sustainable development. A city can be seen as smart in a narrow sense, technology wise, sustainable or smart and sustainable. Current city rankings, which often evaluate and classify cities in terms of the target dimensions “smart” and “sustainable”, certify that some cities are both. In its most established academic definitions, the Smart City also serves both to improve the quality of life of its citizens and to promote sustainable development. Some cities have obviously managed to combine the two. The question that arises is as follows: What are the underlying processes towards a sustainable Smart City and are cities really using smart tools to make themselves sustainable in the sense of the 2015 United Nations Sustainability Goal 11? This question is to be answered by a method that has not yet been applied in research on cities and smart cities: the innovation biography. Based on evolutionary economics, the innovation biography approaches the process towards a Smart City as an innovation process. It will highlight which actors are involved, how knowledge is shared among them, what form citizen participation processes take and whether the use of digital and smart services within a Smart City leads to a more sustainable city. Such a process-oriented method should show, among other things, to what extent and when sustainability-relevant motives play a role and which actors and citizens are involved in the process at all.



Work ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhang Mengqi ◽  
Wang Xi ◽  
V.E. Sathishkumar ◽  
V. Sivakumar

BACKGROUND: Nowadays, the growth of smart cities is enhanced gradually, which collects a lot of information and communication technologies that are used to maximize the quality of services. Even though the intelligent city concept provides a lot of valuable services, security management is still one of the major issues due to shared threats and activities. For overcoming the above problems, smart cities’ security factors should be analyzed continuously to eliminate the unwanted activities that used to enhance the quality of the services. OBJECTIVES: To address the discussed problem, active machine learning techniques are used to predict the quality of services in the smart city manages security-related issues. In this work, a deep reinforcement learning concept is used to learn the features of smart cities; the learning concept understands the entire activities of the smart city. During this energetic city, information is gathered with the help of security robots called cobalt robots. The smart cities related to new incoming features are examined through the use of a modular neural network. RESULTS: The system successfully predicts the unwanted activity in intelligent cities by dividing the collected data into a smaller subset, which reduces the complexity and improves the overall security management process. The efficiency of the system is evaluated using experimental analysis. CONCLUSION: This exploratory study is conducted on the 200 obstacles are placed in the smart city, and the introduced DRL with MDNN approach attains maximum results on security maintains.



Sign in / Sign up

Export Citation Format

Share Document