scholarly journals 3D DOCUMENTATION OF ARCHEOLOGICAL REMAINS IN THE UNDERWATER PARK OF BAIAE

Author(s):  
F. Bruno ◽  
A. Lagudi ◽  
A. Gallo ◽  
M. Muzzupappa ◽  
B. Davidde Petriaggi ◽  
...  

This paper presents some experimentations, which have been conducted in the submerged archeological Park of Baiae, aimed to identify the problems related to the underwater 3D documentation process. The first test has been addressed to verify if a dense stereo mapping technique, usually employed in terrestrial and aerial applications, might be employed in critical underwater conditions by assessing the influence of different factors on the results. In the second test, the accuracy of the 3D model obtained through this technique has been evaluated. The third test deals with the geo-localization of the 3D models, conducted by merging the optical and acoustic data, through a multi-resolution bathymetric map of the site as a reference.

Author(s):  
D. Einaudi ◽  
A. Spreafico ◽  
F. Chiabrando ◽  
C. Della Coletta

Abstract. Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair.


Author(s):  
A. T. Mozas-Calvache ◽  
J. L. Pérez-García ◽  
J. M. Gómez-López ◽  
J. L. Martínez de Dios ◽  
A. Jiménez-Serrano

Abstract. This paper describes the methodology employed to obtain 3D models of three funerary complexes (QH31, QH32 and QH33) of the Necropolis of Qubbet el Hawa (Aswan, Egypt) and the main results obtained. These rock-cut tombs are adjacent structures defined by complex geometries such as chambers, corridors and vertical shafts. The main goal of this study was to discover the spatial relationships between them and obtain a complete 3D model. In addition, some models with realistic textures of the burial chambers were demanded in order to analyse archaeological, architectural and geological aspects. The methodology was based on the use of Terrestrial Laser Scanning and Close Range Photogrammetry. In general, both techniques were developed in parallel for each tomb. Some elements presented difficulties because of their reduced dimensions, the presence of vertical falls, some objects stored in the tombs that generated occlusions of some walls, coincidence of other workers, poor illumination conditions, etc. The results included three complete 3D models obtained without texture and some parts of interest obtained with real textures. All models were merged into a global 3D model. The information extracted from this product has helped architects and archaeologists to contrast their premises about the spatial behaviour of the tombs. The results have also allowed the obtaining of the first 3D documentation of these tombs under the same reference system, allowing them to be studied completely. This information is very important for documentation purposes but also to understand the spatial behaviour of these structures and the excavation processes developed by ancient Egyptians 4000 years ago.


Author(s):  
V. Katsichti ◽  
G. Kontogianni ◽  
A. Georgopoulos

Abstract. In archaeological excavations, many small fragments or artefacts are revealed whose fine details sometimes should be captured in 3D. In general, 3D documentation methods fall into two main categories: Range-Based modelling and Image-Based modelling. In Range Based modelling, a laser scanner (Time of Flight, Structured light, etc.) is used for the raw data acquisition in order to create the 3D model of an object. The above method is accurate enough but is still very expensive in terms of equipment. On the other hand, Image-Based modelling, is affordable because the equipment required is merely a camera with the appropriate lens, and possibly a turntable and a tripod. In this case, the 3D model of an object is created by suitable processing of images which are taken around the object with a large overlap. In this paper, emphasis is given on the effectiveness of 3D models of frail archaeological finds originate from the palatial site of Ayios Vasileios in Laconia in the south-eastern Peloponnese, using low-cost equipment and methods. The 3D model is also produced using various, mainly freeware, hence low-cost, software and the results are compared to those from a well-established commercial one.


Author(s):  
E. Prado ◽  
M. Gómez-Ballesteros ◽  
A. Cobo ◽  
F. Sánchez ◽  
A. Rodriguez-Basalo ◽  
...  

<p><strong>Abstract.</strong> 3D reconstruction and virtual reality (VR) technology provide many opportunities for the documentation and dissemination of underwater cultural heritage. Advances in the development of underwater exploration technology have allowed for the first time to accurately reconstruct a complete 3D model of the cargo Río Miera in the Cantabrian Sea. Sunk on December 6, 1951 after a strong collision, the cargo ship Río Miera rests on a sandy bottom about 40 meters deep, very close to the Cantabrian coast. Located in an area of strong currents is a classic objective of the region for the most experienced divers. The survey was carried out this summer in R/V Ramón Margalef of the IEO, acquiring acoustic data with multibeam echo sounders and hundreds of images acquired by a remotely piloted underwater vehicle. The campaign is part of the PhotoMARE project - Underwater Photogrammetry for MArine Renewable Energy. This work describes the workflow regarding the survey, images and acoustic data acquisition, data processing, optic 3D point cloud color enhancement and acoustic and optic dataset merging procedure to obtain a complete 3D model of wreck Río Miera in Cantabrian Sea. Through this project, Spanish Institute of Oceanography – IEO have advanced – combining acoustic and image methods - in the generation of 3D models of archaeological sites and submerged structures.</p>


Author(s):  
L. Zhang ◽  
F. Wang ◽  
X. Cheng ◽  
C. Li ◽  
H. Lin ◽  
...  

Abstract. 3D documentation and visualization of cultural heritage has a great significance in preserving the memories and history, and supports cultural tourism. It is of great importance to study the 3D reconstruction of cultural relics and historic sites. Preservation, visualization of valuable cultural heritage has always been a difficult challenge. With the developments of photogrammetry, terrestrial laser scanning, 3D models were able to obtained quickly and accurately. In this paper we present the survey and 3D modelling of an ancient temple, Banteay Srei, situated in Angkor, which has long been admired as a “Precious Gem” of Khmer Art for its miniature size of structures and exceptional refinement of the sculptures. The survey was performed with FARO Focus3D 330 and FARO Focus3D 120 terrestrial laser scanners, a micro unmanned aerial vehicle (UAV) (DJI Phantom 4 Pro) and a digital camera (Nikon D90). Once the acquired scans were properly merged, a 3D model was generated from the global point cloud, and plans, sections and elevations were extracted from it for restoration purposes. A short multimedia video was also created for the “Digital Banteay Srei”. In the paper we will discuss all the steps and challenges addressed to provide the 3D model of Banteay Srei Temple.


Author(s):  
M. Abdelaziz ◽  
M. Elsayed

<p><strong>Abstract.</strong> Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200&amp;thinsp;m<sup>2</sup> of the submerged site, which exceeds more than 13000&amp;thinsp;m<sup>2</sup>, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.</p>


Author(s):  
S. Artese ◽  
J. L. Lerma ◽  
J. Aznar Molla ◽  
R. M. Sánchez ◽  
R. Zinno

<p><strong>Abstract.</strong> The three-dimensional (3D) documentation and surveying of cultural heritage can be carried out following several geomatics techniques such as laser scanning and thermography in order to detect the original 3D shape after applying reverse engineering solutions. In almost all cases, the integration of data collected by different instruments is needed to achieve a successful and comprehensive 3D model of the as-built architectural shape of the historical building. This paper describes the operations carried out by the authors to determine the as-built 3D model of the Escuelas Pias Church, related namely to the dome and circular nave. After the description of the church and historical notes, attention will be driven to the indirect registration results obtained with three different laser scanning software packages, highlighting similarities and differences, and the consequences while generating meshes. The 3D model carried out will then be described and the results of some investigations with regard to the hypotheses about the design of the dome and the origin of the alterations will be presented.</p>


Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. &lt;br&gt;&lt;br&gt; For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. &lt;br&gt;&lt;br&gt; Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. &lt;br&gt;&lt;br&gt; In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


2021 ◽  
Author(s):  
Martin Hložek ◽  
Markéta Tymonová ◽  
Vojtěch Nosek ◽  
Zdeňka Měchurová ◽  
Petr Holub ◽  
...  

The publication is focused on late medieval pottery products with higher aesthetical effect. The key group is represented by stove tiles, where the unifying elements of relief decoration helped to define series of motifs for stoves with specific iconographic concept, which were found in various locations. The same approach can be also used with small ceramic sculptures, aquamaniles and relief-decorated floor tiles, even though the achieved information value in these cases is much lower. Micropetrographic, XRF and other analyses helped to identify the production centres and the distribution model of these ceramic groups. 3D documentation enabled a detailed comparison of differences between individual reliefs and specific traces of manufacturing procedures. Individual chapters contain active links to the source database of analysed items and to 3D models of selected specimens from reference collections.


Author(s):  
Agnieszka Chmurzynska ◽  
Karolina Hejbudzka ◽  
Andrzej Dumalski

During the last years the softwares and applications that can produce 3D models using low-cost methods have become very popular. What is more, they can be successfully competitive with the classical methods. The most wellknown and applied technology used to create 3D models has been laser scanning so far. However it is still expensive because of the price of the device and software. That is why the universality and accessibility of this method is very limited. Hence, the new low cost methods of obtaining the data needed to generate 3D models appeare on the market and creating 3D models have become much easier and accessible to a wider group of people. Because of their advantages they can be competitive with the laser scanning. One of the methods uses digital photos to create 3D models. Available software allows us to create a model and object geometry. Also very popular in the gaming environment device – Kinect Sensor can be successfully used as a different method to create 3D models. This article presents basic issues of 3D modelling and application of various devices, which are commonly used in our life and they can be used to generate a 3D model as well. Their results are compared with the model derived from the laser scanning. The acquired results with graphic presentations and possible ways of applications are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document